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1 Introduction

What role does ambiguity aversion play in generating cyclical fluctuations and asset price move-

ments? In this paper, we adopt the smooth ambiguity preferences of Klibanoff et al. (2005,

2009) to examine the cyclical dynamics of a Real Business Cycle model with irreversible invest-

ment and labor augmenting technology shocks. In this framework, the shock to aggregate TFP

evolves as a function of a latent variable governing its persistence. Ambiguity is introduced in

this framework by assuming that agents are unsure about the distribution of the latent variable

in that they cannot distinguish a process that has moderate persistence but high volatility,

and one which is less volatile but highly persistent. Ambiguity aversion in agents’ preferences

then endogenously generates “doubt and pessimism” about the external environment: the con-

sumption and investment decisions of an ambiguity averse agent may be viewed in terms of

the decisions of an expected utility maximizing agent with beliefs that are more uncertain and

pessimistic relative to those that are based on inference from actual data.

There are now a number of studies that seek to the understand the role of uncertainty

in driving the business cycle. Studies such as Bloom et al. (2012) or Gilchrist et al. (2014)

construct alternative measures of uncertainty through the aggregation of individually observed

quantities.1 Yet Ludwigson et al. (2016) find that higher uncertainty about real variables in

a recession is an endogenous response to other variables, while financial market uncertainty is

a likely source of the fluctuations. The more recent literature seeks to identify the role of un-

certainty/ambiguity aversion that is generated endogenously through agents’ optimal choices.

Cagetti et al. (2002) study the robustness of agents’ decision problems for prices and quantities

in a one-sector optimal growth model, where the growth rates of technology are altered by

infrequent large shocks and continuous small ones. The paper models robustness by assuming

that the decision-maker treats the specification of the technology shock process as an approx-

imation, and acts as if a malevolent player threatens to perturb the actual data generating

process relative to the approximating model. They find that the robust motive for precaution-

1Specifically, Bloom et al. (2012) model uncertainty as the volatility of establishment-level measures of total
factor productivity in US 4-digit industries while Gilchrist et al. (2014) construct an observed measure of
uncertainty as time-varying idiosyncratic volatility in firms’ stock returns.
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ary savings increases the capital stock, which is also a feature of the smooth ambiguity model

that we consider. They also find that factor “risk prices” contain an uncertainty premia under

robust decision-making, which are largest when the investor is most unsure about the hidden

state, namely, the mean growth rate of technology.

Collard et al. (2016) study the historical equity premium using the smooth ambiguity model

in an endowment economy framework. They find that ambiguity aversion accentuates the

conditional uncertainty embodied in U.S. macroeconomic growth outcomes endogenously. After

calibrating the ambiguity aversion parameter to match the risk-free rate, they are able to match

the first and second conditional moments of observed return dynamics. Jahan-Parvar and Liu

(2012) and Liu and Zhang (2015) also seek to account for asset pricing phenomena under the

generalized recursive smooth ambiguity first proposed by Ju and Miao (2012) augmented with

adjustment costs in investment and a Markov switching process for aggregate productivity

growth.2 Gallant et al. (2015) use macroeconomic and financial data with Bayesian methods to

measure the size of ambiguity aversion in a Lucas-type consumption-based asset pricing model.

Another strand of the literature uses the multiple priors utility framework of Gilboa and

Schmeidler (1989) to account for cyclical and asset pricing phenomena; see Ilut and Schneider

(2014), Bianchi et al. (2016), or Nimark (2014). Ilut and Schneider (2012) assume a decision

problem in which agents act as if they evaluate plans using a worst case probability drawn from

a set of multiple beliefs. They model a loss in confidence as an increase in the set of beliefs

from which the worst case beliefs are drawn. The paper incorporates ambiguity and changes in

confidence into a New Keynesian business cycle model by assuming that “agents’ set of beliefs,

such as an innovation to productivity, is parameterized by an interval of means centered around

zero.” An increase in the width of the interval is associated with a loss of confidence, especially

when the worst case mean becomes worse. One problem with this approach is that ambiguity

and ambiguity aversion are both determined by the size of the set of possible beliefs.3 Nimark

2For example, Liu and Zhang (2015) seek to establish the cross-correlations between equity returns (or
the “variance risk premium”) and variables typically affected/indicated by the business cycle in a production
economy with ambiguity.

3Unlike the smooth model of ambiguity, their approach allows for log-linear solution methods which capture
the impact of ambiguity and ambiguity aversion in a first-order manner. These authors argue that a change
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(2014) develops a business cycle model which combines higher order beliefs - expectations

about the expectations of others - with the existence of a public signal that is more likely to be

observed after unusual events. Such ‘man-bites-dog’ type signals increase uncertainty as well as

disagreement among agents, and are able to account for periods of large changes in aggregate

activity without large changes in underlying fundamentals.

In this paper, we examine the ability of a calibrated/empirically founded productivity shock

process that allows for asymmetric effects in booms versus recessions can generate the cyclical

dynamics of real variables such as consumption, investment and output) of the strength and

duration observed in the data when coupled with ambiguity and investment irreversibility. In

our framework, ambiguity arises from the fact that agents cannot distinguish between two

possible processes driving an unobserved temporary component to the aggregate TFP process.

Backus et al. (2014) have argued that learning together with the role of ambiguity may prove

useful for generating the observed business cycle dynamics in that learning provides another

source of dynamics, which have been exploited by Collard et al. (2012) and Collin-Dufresne et al.

(2013) to generate significant effects on asset prices. This arises in our framework as agents

do not know whether variation in aggregate TFP is driven by a process with high persistence

and low volatility, or one with lower persistence but higher volatility, and they must make

inferences about the probability of one of these processes being the true process at the same

as they infer the behavior of the unobserved temporary component using a Kalman filtering

algorithm. In contrast to a situation with learning about an unobserved temporary component

drawn from a known probability distribution, ambiguity arises from the problem of inferring

the true probability distribution generating the temporary fluctuations in future fundamentals.

Our results reveal two key findings regarding the role of ambiguity aversion with learn-

ing in an otherwise standard real business cycle model. First, as Tallarini (2000) or Backus

et al. (2014) have emphasized in their analysis of cyclical fluctuations generated by recursive

non-expected utility or ambiguity-averse preferences, fluctuations in aggregate quantities arise

in confidence behaves like a news shock considered, for example, by Beadry and Portier (2006), Jaimovich and
Rebelo (2009), and others. However, the difference between changes in confidence and news shocks is that the
latter are followed, at least on average, by a shock realization that corroborates the news, but this need not be
the case for changes in confidence.
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primarily from changes in intertemporal substitution motives while ambiguity aversion plays

a smaller role.4 Both our quantitative findings together with a log-linear approximation to

the social planner’s under the assumption of known persistence for the TFP process corrobo-

rate this result. Specifically, we find that the intertemporal substitution in consumption and

leisure operating through the transmission channels of the standard Real Business Cycle model

dominates the impact of uncertainty aversion when agents can choose to optimally smooth

consumption through investment and hours worked choices in response to labor-augmenting

technology shocks. Second, we show information and learning effects are key to how ambiguity

and ambiguity aversion affect endogenous choices. Based on Bayesian estimates of the underly-

ing TFP process, we show that more precise beliefs regarding the unknown process generating

the TFP process are associated with lower cyclical variability and greater persistence in the

quantity variables. This is a transmission channel that is typically missing in business cycle

models.

The informativeness of the underlying TFP process also has implications for the role of

ambiguity and ambiguity aversion on the behavior of asset prices and in particular, the risk-

free rate. As is well known, an ambiguity averse agent has “as if” beliefs which are more

pessimistic relative to a Bayesian learner placed in a similar environment. We show that the

greater the endogenous distortions induced by ambiguity aversion, the lower is the risk-free

rate in equilibrium. Consequently, one may view the magnitude of the risk-free implied by

the model as an endogenous measure of ambiguity. Using data on aggregate TFP as well as

estimates of sectoral TFP growth from Bloom et al. (2012), we demonstrate that the existence

of such distortions depends on the properties of the estimated TFP processes as well as the

presence of ambiguity aversion. Interestingly, we find that standard uncertainty measures do

not always correlate with ambiguity measures based on similar data.

The remainder of this paper is organized as follows. Section 2 describes the model and the

social planner’s problem used to generate the optimal quantities. It also describes the smooth

4Strzalecki (2013) shows more generally that there is interdependence between ambiguity and the timing of
the resolution of uncertainty in models of ambiguity aversion, and that a quantitative assessment is required to
disentangle the importance of two effects, which may depend on the calibrated parameters in applications such
as ours.
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ambiguity preferences and the evolution of beliefs under ambiguous information about exoge-

nous shocks. Section 3 describes the Bayesian estimation of the exogenous processes describing

TFP growth. It also describes the simulation results for the model under alternative preference

and informational assumptions. Section 4 concludes. Details of the numerical solution method,

the Bayesian estimation method, and the log-linearization to the social planner’s problem are

provided in the Online Appendix .

2 The Model

2.1 Agent’s preferences: recursive smooth ambiguity

We begin by setting out a dynamic, recursive version of the smooth ambiguity averse preferences

as developed by Klibanoff et al. (2005, 2009). This model is based on the state space, which

is the set of all observation paths emanating from an initial state s0. Thus, the state at date

t is denoted st = (s0, s1, · · · , st), where st ∈ Υt. Agents choose consumption/investment plans

f , each of which associates a payoff to the node st in the event tree. The agent is uncertain

about the stochastic process governing the probabilities on the event tree. This uncertainty

is indexed by the parameter θ ∈ Θ, which denotes the set of unobservable parameters. The

probability that the next observation will be st+1, given that the node st has been reached on

the event tree, is given by πθ(st+1|st). The agent further has a prior µ(θ) for θ ∈ Θ. Using the

representation in Klibanoff et al. (2005, 2009), the recursive smooth ambiguity preferences over

plans f at the node st are updated and represented as

Vst(f) = u(f(st)) + βφ−1

[∫

Θ

φ

(∫

Υt+1

V(st,st+1)(f)dπθ(st+1|st)
)
dµ(θ|st)

]
, (2.1)

where Vst(f) is a recursively defined direct value function, u(·) characterizes attitudes towards
risk, β is a discount factor, φ(·) is a function characterizing the agent’s ambiguity attitude, and

µ(·|st) denotes the Bayesian posterior. A concave φ characterizes ambiguity aversion, which is

defined to be an aversion to mean-preserving spreads in the distributions of expected utility

values. The model also does not, in general, allow a reduction between the second-order beliefs

µ and the first-order probabilities denotes by πθ; such a reduction occurs only in the case of a
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linear φ which represents an ambiguity neutral Bayesian expected utility maximizer.

2.2 Production and capital accumulation

To begin we assume a one-sector economy where the production function of the firm is given

by

yt = ka
t (Atnt)

1−a, 0 < a < 1, (2.2)

where At is a technology shock. The firm’s capital stock evolves as

kt+1 = (1− δ)kt + it, 0 < δ < 1. (2.3)

Finally, we assume that investment is irreversible, it ≥ 0. As we show in a decentralized version

of the model, this assumption amounts to assuming that there is no market for used capital or,

equivalently, its price is zero. While it may be argued that investment irreversibility does not

hold at the aggregate level, we choose to use this investment friction in place of the standard

adjustment costs model, as the presence of irreversible investment will lead to an endogenous

cost of adjustment. (See Demers et al. (2003).)

Uncertainty in this economy is assumed to driven by the stochastic behavior of productivity

growth. As in Collard et al. (2016), we assume there is a long run average growth rate of

productivity, ḡ, and a deviation from it, xk,t+1, which is assumed to follow a persistent stochastic

process. This specification of the technology process is similar to the models of long-run risk

proposed by Bansal and Yaron (2004) and Croce (2010). However, the business cycle effect on

productivity, xk,t+1, is not observed directly, and agents are unsure the value of the persistence

parameter that determines the evolution of the latent productivity process. Specifically, they

believe that it could be high (ρh) or low (ρl). At time t, the process for the growth rate of the

technology shock is given by

gAk,t+1 = ḡ + xk,t+1 + σAk
ǫAk ,t+1, (2.4)

xk,t+1 = ρkxk,t + σxk
ǫxk,t+1, (2.5)
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where (ǫAk,t+1, ǫxk,t+1)
′ ∼ N(0, I) for k = h, l. Here ḡ denotes the long run trend value for the

technology shock, and the latent process xk,t+1 is the temporary deviation. Associated with

each persistence parameter, there is also a tuple of volatility parameters (σA,k, σx,k). Given

these assumptions, next period’s technology shock is written as

At+1 = At exp(gAk,t+1) = At exp(ḡ + xk,t+1 + σAk
ǫAk ,t+1). (2.6)

According to this representation, the growth rate of the technology shock between t and t + 1

evolves as a function of a known permanent mean, ḡ, an unknown temporary component xk,t+1,

and some noise. At time t, the agent has available observations on the current and past values

of the technology shock, At. However, the agent does not know the process generating xk,t and

forms beliefs about it, given prior beliefs at time 0 and the observations on At, At−1, . . . .

2.3 Beliefs

The agent is assumed to know the value of the parameters (ḡ, σA,k, σx,k). The agent also

observes contemporaneously the normalized values of consumption, investment, capital stock,

and output. Given xk,t, ρk and the current of observations or node (ct, it, kt, yt), the probability

distribution over gAk,t+1 is given by

gAk,t+1 ∼ N(ḡ + ρkxk,t, σ
2
Ak

+ σ2
xk
).

This distribution denotes the typical first-order distribution πθ(st+1|st) in the original KMM

formulation.

We now turn to a characterization of second-order uncertainty. The support of the second-

order distribution is a union of two component sets, {ρlxl,t|xl,t ∈ ℜ} and {ρhxh,t|xh,t ∈ ℜ}. The
agent’s prior belief ascribes a measure to each component set, with the measure on the first

component being given by η0×N(0, σ2
0) and that on the second component by (1−η0)×N(0, σ2

0).

The agent updates his beliefs using Bayes rule, based on the history of growth realizations and

under the assumption that the economy conforms to one of the two processes described above.

Let x̂k,t ≡ E[xk,t|gA,1, . . . , gA,t] denote the expectation of xk,t, conditional on the history of

8



growth rates up to t if the beliefs were updated assuming ρ = ρk is the data generating process.

The filtered latent state, x̂k,t, is obtained by applying the (steady state) Kalman filter that

takes the process ρ = ρk as the “true” data generating process. The agent’s posterior beliefs

then ascribes a measure on the first component set given by ηt × N(x̂l,t,Ωl) and that on the

second by (1−ηt)×N(x̂h,t,Ωh), where Ωk, k = l, h denotes the steady state variance associated

with the Kalman filter based on the process with ρ = ρk and ηt shows the posterior belief on

ρl. Hence, the agent’s beliefs may be summarized by the tuple µt = (x̂l,t, x̂h,t, ηt).

2.4 The social planner’s problem

We initially consider the social planner’s problem for this economy. Given the stochastic growth

in the technology shock, the state variables for the social planner’s problem consist of the initial

capital kt, initial beliefs µt and the level of the technology shock, At. Thus, the generic social

planner’s problem is given by

J(kt, µt, At) = max
ct,nt,it

{
u(ct, lt) + βφ−1 [Eµt

φ (Ext
J(kt+1, µt+1, At+1)))]

}
(2.7)

subject to

ct + it ≤ ka
t (Atnt)

1−a,

kt+1 = (1− δ)kt + it,

lt + nt ≤ 1,

it ≥ 0,

and the law of motion for beliefs which we discuss in the next section.5

Since the technology shock At is nonstationary, we will consider the transformed value func-

5It is possible to replicate the solution to the social planner’s problem in a recursive competitive equilibrium
where the representative consumer makes consumption and labor supply choices and holds shares and bonds in
the firm while all production and capital accumulation decisions are made by value-maximizing firms. In this
setup, the presence of an irreversibility constraint is equivalent to assuming that there are no resale markets
for used capital; see Altug and Labadie (2008), Ch. 10 for a discussion. Also see Kaltenbrunner and Lochstoer
(2010) for a similar decentralization scheme in the context of an economy with non-expected utility preferences.
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tion in terms of stationary variables. Allowing for an endogenous hours choice, a stationarity in-

ducing transformation exists under two different sets of assumptions for the utility function and

the smooth ambiguity aversion function, namely, a power-power specification for risk aversion

and ambiguity aversion and log-exponential specification, respectively. These specifications are

similar to the cases considered by Ju and Miao (2007).The details of the stationarity-inducing

transformations are in the Appendix, Section A.

Here we present the transformed problem for the power-power specification. Define

{
ĉt, ît, k̂t, ŷt

}
=

{
ct
At

,
it
At

,
kt
At

,
yt
At

}

. In general, the indirect value function depends on the state variables kt, µt and At. However,

making use of the homogeneity of the indirect value function, it is straightforward to show that

it satisfies

J(kt, µt, At) = Ĵ(k̂, µt)A
(1−γ)ν
t .

Thus, the stationary version of the indirect value function for the social planner’s problem is

given by

Ĵ(k̂t, µt) = max
ĉt,nt ,̂it

{
(ĉνt l

1−ν
t )1−γ

1− γ
+

β

1− γ

[
Eµt

(
Ext

(1− γ)Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)
)1−α

] 1
1−α

}
(2.8)

subject to

ĉt + ît ≤ k̂a
t n

1−a
t ,

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

lt + nt ≤ 1,

ît ≥ 0,

and the law of motion for beliefs to be discussed below.
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2.4.1 The optimality conditions

Define the quantities

Υt =
Eµt

(
Ext

Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)
)
−α

[
Eµt

(
Ext

Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)
)1−α

] −α
1−α

(2.9)

ξt =

(
Ext

Ĵ(k̂t+1, µt+1) exp(ν(1 − γ)gA,t+1))
)
−α

[
Eµt

(
Ext

Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)
)
−α
] . (2.10)

Let λt denote the Lagrange multiplier on the aggregate resource constraint and ϕt the multiplier

on the non-negativity constraint. Using the expressions for Υt and ξt, the first-order conditions

with respect to ĉt, lt, ît are given by

ν(ĉνt l
1−ν
t )−γ(ĉt/lt)

ν−1 = λt, (2.11)

(1− ν)(ĉνt l
1−ν
t )−γ(ĉt/lt)

ν = (1− a)λtk̂
a
t n

−a
t , (2.12)

λt − ϕt = ΥtEµt

[
ξtExt

(
Ĵ1(k̂t+1, µt+1) exp((ν(1− γ)− 1)gA,t+1)

)]
(2.13)

Finally, the envelope condition is given by

Ĵ1(k̂t, µ̂t) = λtak̂
a−1
t n1−a

t + (1− δ)(λt − ϕt). (2.14)

The conditions (2.11-2.12) simplify to yield the condition describing the intratemporal sub-

stitution in consumption and labor supply

1− ν

ν

ĉt
lt

= (1− a)k̂a
t n

−a
t . (2.15)

Given a solution for k̂t+1 as a function of (k̂t, µt), this condition can be solved for current lt for

each k̂t and beliefs µt.

Likewise, defining exp(gA,t+1)k̂
1
t+1 = (1− δ)k̂t + ît for ît > 0 and exp(gA,t+1)k̂

0
t+1 = (1− δ)k̂t

for ît = 0, evaluating the expressions for Υt and ξt at these expressions, and using the first-order

conditions that hold time t+ 1, the conditions describing the optimal choice of investment are
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given by

λt+1 = Υ1
tEµt+1

[
ξ1t+1Ext+1

(
Ĵ1(k̂t+2, µ̂t+2) exp((ν(1 − γ)− 1)gA,t+2)

)]
, ît+1 > 0

λt+1 > Υ0
tEµt+1

[
ξ0t+1Ext+1

(
Ĵ1((1− δ)k̂t+1, µ̂t+2) exp((ν(1− γ)− 1)gA,t+2)

)]
, ît+1 = 0.

Now consider a version of the envelope condition that holds at time t+ 1. Using the above

results, we obtain

Ĵ1(k̂t+1, µt+1) = λt+1

{
ak̂a−1

t+1 n
1−a
t+1 + (1− δ)min (1,

Υ0
t+1Eµt+1

[
ξ0t+1Ext+1

(
Ĵ1((1− δ)k̂t+1, µ̂t+2) exp((ν(1− γ)− 1)gA,t+2)

λt+1

)])}
.

The envelope condition provides an expression for the marginal value of capital next period.

When there is an irreversibility constraint, the marginal value of capital accounts for the fact

that the irreversibility constraint may be binding next period. It is this aspect that leads to

an endogenous risk premium or an option value to wait in the model with an irreversibility

constraint. (For further details, see Demers et al. (2003).)

Using these results, the optimal choice of investment at time t can now be written as

1 = Υ1
tEµ̂t

{
ξ1tExt

[
exp(((1− γ)ν − 1)gA,t+1)

(
λt+1

λt

)(
ak̂a−1

t+1 n
1−a
t + (1− δ)min (1,

Υ0
t+1Eµt+1

[
ξ0t+1Ext+1

(
Ĵ1((1− δ)k̂t+1, µ̂t+2) exp((ν(1− γ)− 1)gA,t+2)

λt+1

)]))]}

if ît > 0 (2.16)

1 > Υ0
tEµ̂t

{
ξ1tExt

[
exp(−γgA,t+1)

(
λt+1

λt

)(
ak̂a−1

t+1 n
1−a
t+1 + (1− δ)min (1,

Υ0
t+1Eµt+1

[
ξ0t+1Ext+1

(
Ĵ1((1− δ)k̂t+1, µ̂t+2) exp(((1− γ)ν − 1)gA,t+2)

λt+1

)]))]}

if ît = 0. (2.17)

These conditions allow us to examine the impact of ambiguity and ambiguity aversion on

the optimal choices in equilibrium. In our framework, ambiguity aversion arises from the nature
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of the processes that generate TFP growth. Such ambiguity aversion leads to an endogenous

tilting or distortion of the posterior distributions that signify agent’s subjective beliefs about

the validity of a given process describing the external environment. The optimality conditions in

(2.17-2.16) depend on the distortion factors Υt and ξt. While Υt does not affect the second-order

distributions appearing in the optimality conditions (2.17-2.16), the distortion term defined by ξt

does. In this expression, ξt depends expectations that are taken with respect to the distribution

of xt, conditional on information of the history the technology shock (gA,t, gA,t1, · · · ) and, hence,
is random from the view of the agent’s subjective beliefs at date t. The function ξt may be viewed

as the factor that create the endogenous tilting or distortion in agents’ beliefs due to ambiguity

aversion. In the case of ambiguity aversion with α > γ > 0, the distortion puts greater

weight (relative to a pure Bayesian decision-maker) on the probability distributions of the

x′

ts associated with lower expected continuation values, Ext
Ĵ(k̂t+1, µt+1) exp(ν(1 − γ)gAk,t+1)).

Thus, we may view the impact of the ξt as shaping the “as if” beliefs of the agent, that is,

the (probabilistic) belief that supports the action chosen in equilibrium. In the absence of

ambiguity aversion, the agent behaves as a pure Bayesian decision-maker who is uncertain

about the temporary component of TFP growth xt, and has beliefs that are just a mixture of

the probability distributions for xkt, k = l, h, as discussed above

2.5 A Real Business Cycle model with ambiguity aversion

We now turn to evaluation of the model with ambiguity aversion and irreversible investment

with the specified beliefs. Denote by x̂
(i)
k,t+1, i = l, h, k = l, h, the agent’s forecast for the

one-period ahead update using a Kalman filter which takes the model with ρ = ρi as the data

generating process, when the data is actually generated by the ρ = ρk process. Correspondingly,

η
(l)
t+1 (respectively, η

(h)
t+1) is the posterior probability that the low persistence process is the correct

model when the low (high) persistence process is the correct model. Under the assumption

that consumption, investment and the capital stock normalized by the level of the technology

shock, ĉt = ct/At, ît = it/At, and k̂t = kt/At, are stationary random variables and noting that
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µt = (x̂l,t, x̂h,t, ηt)
′, the indirect value function can now be defined as:

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ĉt,nt ,̂it

{
(ĉνt l

1−ν
t )1−γ

1− γ
+

β

[
ηtEx̂l,t

(
Exl,t

Ĵ(k̂
(l)
t+1, x̂

(l)
h,t+1, x̂

(l)
l,t+1, η

(l)
t+1) exp((1− γ)gAl,t+1)

)1−α

+

(1− ηt)Ex̂h,t

(
Exh,t

Ĵ(k̂
(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
l,t+1, η

(h)
t+1) exp((1− γ)gAh,t+1)

)1−α
] 1

1−α

}
(2.18)

subject to

ĉt + ît ≤ k̂a
t n

1−a
t ,

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

lt + nt ≤ 1,

ît ≥ 0,

and given the laws of motion for beliefs x
(k)
j,t+1, j = l, h together with the condition determining

the evolution of η
(k)
t+1 for k = l, h described in the Online Appendix, Section B.

In the specification described above, it is worth noting that the agent is ambiguity averse if

α > γ. Another way of understanding the presence of ambiguity aversion is that it precludes

the evaluation of future utilities based on the predictive distribution of growth rates. For an

ambiguity neutral agent with α = 0 who cannot distinguish the high persistence/low variability

process from the low persistence/high variability process, the agent’s subjective beliefs and the

conditional distribution of the technology growth rates reduce to the predictive distributions

of a Bayesian learner. In this case, the predictive distributions over future growth rates gAk,t+1

conditional on current and past growth rates (gA,t, . . . , gA,0) are given by gAk,t+1 ∼ N(ḡ +

ρkx̂k,t, ρ
2
kΩk + σ2

xk
+ σ2

Ak
).6 When ambiguity aversion is present, however, no such reduction is

possible.

6We could also consider a third case in which the agent knows the distribution from which gA,t is coming from
but must make inferences about the unobserved cyclical component, xt+1, given current and past observations
on productivity growth.
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Table 1: Unconditional business cycle moments

Full Sample - 1947:1-2015:4 Restricted Sample - 1980:1-2015:4

Investment-Output Ratio

i/y 0.1425 0.1568

Standard deviations

y c i h p y c i h p
1.6244 1.2621 7.4416 1.9249 0.9341 1.2938 1.0755 6.2839 1.7830 0.9296

Correlations

y c i h p y c i h p
y 1.0000 0.7742 0.8406 0.8863 -0.0640 1.0000 0.8662 0.9127 0.8645 -0.2664
c 1.0000 0.6943 0.6581 -0.0677 1.0000 0.7299 0.7678 -0.2670
i 1.0000 0.7615 -0.0999 1.0000 0.8167 -0.2962
h 1.0000 -0.5393 1.0000 -0.7147
p 1.0000 1.0000

Note: This table shows the average investment-output ratio and the unconditional second moments of the
HP-filtered series on output, consumption, investment, hours worked, and labor productivity.

3 Quantitative results

In Table 1, we present the unconditional business cycle moments for the full sample between

1947:12015:4 and the restricted sample between 1979:1-2015:4. All series are Hodrick-Prescott

filtered versions of the original series. The data on output, consumption, investment, and

hours worked are obtained from the Federal Reserve Bank of St. Louis database (FRED). The

output, consumption, and investment series are seasonally adjusted and measured in chained

2009 dollars. Investment refers to total private investment and the hours worked series is an

index of total hours worked in the nonfarm business sector, seasonally adjusted with the 2009

value equal to 100. Table 1 shows that the volatility of the endogenous variables are considerably

lower in the restricted sample while the correlations between the different variables are higher.

This finding might be taken as evidence of the “Great Moderation” that various authors such

as Stock and Watson (2002) have documented for the post-1980’s era. We also observe that

the correlations of labor productivity p = y/h with output, consumption, and investment are

nearly zero for the full sample but these become negative for the restricted sample.

To generate the simulations of the model, we subsequently estimate processes with different
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Figure 1: The growth rate of factor utilization adjusted TFP (in percentage terms) over the
sample 1947:2-2015:4
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persistence parameters that contain a permanent and unobserved transitory component. Hence,

we also discuss the cyclical behavior of total factor growth for the full sample and the post-1980

sample. We use seasonally adjusted data on total factor productivity (TFP) growth obtained

from the Federal Reserve of San Francisco, see Fernald (2012) for details. The data on inputs,

including capital are used to produce a real-time, quarterly series on total factor productivity

growth as the measured Solow residual. An additional advantage of these data are that they are

adjusted to account for the changes in factor utilization. Figure 1 displays the growth rates of

the factor utilization adjusted TFP series measured at annual rates for the full sample together

with NBER recession dates.

Recently, many authors have observed that there has been a secular decline in TFP growth;

see Gordon (2015). This finding is also evident from Figure 1. Specifically, average TFP

growth has declined in the post-1980’s relative to the pre-1980’s period from 1.78% to 0.88%

for the adjusted TFP growth series, measured at annual rates. There is also a decline in the

variability of TFP growth after 1980 but this is not as great as the decline in the average

quantities. Specifically, the standard deviation of adjusted TFP growth has fallen from 3.75%

in the pre-1980’s period to to 2.94% in the post-1980’s period.7

7Similar findings hold for the unadjusted TFP growth series. Specifically, its growth rate has declined from
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3.1 Bayesian estimation of the underlying TFP process

The model for the TFP growth process to be estimated is as follows:

gA,t+1 = ḡ + xt+1 + σA,kǫA,t+1

xt+1 = ρkxt + σx,kǫx,t+1

(3.1)

In the Online Appendix, Section C, we describe the estimation of the model’s parameters

based on an unrestricted model using simulation based Bayesian inference with noninformative

priors. As the results reported there show, the distribution of the persistence parameter ρ covers

a wide range of values between 0 and and 0.90 with high probability. This also indicates the dif-

ficulty to pinpoint the exact value of the persistence in the TFP growth process. To see this fur-

ther, next, we estimate the models for given values of ρ, i.e. ρ = 0.25, 0.30, 0.65, 0.70, 0.85, 0.90.

The results are displayed in Table 2.

The results in Table 2 confirms our findings on the (in)-ability to identify the exact value

of the persistence parameter. Regardless of the values of the ρ ranging from 0.20 to 0.90, the

value of maximum likelihood only changes after the second digit and the change in the marginal

likelihoods are very minor. In the Online Appendix, Section C, we also display the distribution

of the parameters where we set the values of ρ as 0.30 and 0.85 for the low and high persistence

cases, respectively.

Given the parameter setup indicated in Table 2, we can also compute agent’s belief on the

true DGP denoted ηt for the low persistence model with ρ = 0.30 relative to the one with

ρ = 0.85. This can be computed using the agent’s updating mechanism after observing data on

the actual TFP process. We compute the sequence of ηt’s over the period starting from 1947:12

until 2015:4 using the parameter setup as shown in Table 2. We use the steady state Kalman

filter to compute the beliefs. In line with the results so far, the probabilities attached to each

separate process vary in a band around 0.50-0.55, with some tendency to increase above this

value towards the end of the sample. This suggests that there is very little learning that is

occurring over the sample period, though we do see an increase in the probability attached to

1.72% to 0.85% in the post-1980’s relative to the pre-1980’s while its standard deviation has declined from 4.07%
to 2.78% across the two periods.
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Table 2: Posterior results for the model using TFP-util for different values of ρ using the sample
of 1947-2 : 1977-4

0.25 0.30 0.65 0.70 0.85 0.90
ḡ 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086)
σg 0.945 (0.075) 0.946 (0.071) 0.949 (0.063) 0.950 (0.063) 0.952 (0.062) 0.953 (0.062)
σx 0.046 (0.120) 0.044 (0.110) 0.056 (0.080) 0.054 (0.073) 0.040 (0.049) 0.033 (0.040)
ρ 0.250 0.300 0.650 0.700 0.850 0.900
Max. -167.40 -167.40 -167.40 -167.40 -167.40 -167.40
Mar. -169.70 -169.73 -170.16 170.20 -170.32 -170.38

Note: The results show the posterior means and posterior standard deviations (in parenthesis) of the model
parameters in (3.1) (evaluated in percentage terms). The inference was carried out with 60,000 draws where
the first 10,000 are used as burn-in sample. We kept every 5th draw, which yields a sample of 10,000 draws
from the ergodic distribution.

Figure 2: Evolution of the probability for the low persistence model with ρ = 0.30 to be the
true DGP over the sample 1947:2:2015-4
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0.45
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0.55

Probability of the low persistence process

Quarter

the low persistence process in the run-up to the 2008 global financial crisis. The two panels

Figure 3 further show the time series of the filtered means, x̂l,t and x̂h,t estimated using data

on actual TFP growth. These figures show that the filtered means tend to decline during

the recessions of the 1970’s and 1980’s as well as during the global financial crisis of 2008.

This decline is particularly severe for agents’ beliefs regarding the cyclical mean of the high

persistence process, x̂ht.
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Figure 3: Filtered means (in percentage terms) conditional on the processes with ρ = 0.30 and
ρ = 0.85 over the sample 1947:2:2015-4
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In the Online Appendix, we also allow for informative priors and generate the sequence of

filtered means and the mixing probabilities denoted by x̂lt, x̂ht, ηt associated with the estimated

models under those priors. As expected, even slightly informative priors are associated with

an eventually higher probability being placed on low persistence process. We will discuss the

ramifications of these estimation results for the model’s behavior in the next section.
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3.2 Simulation results

In this section, we calculate the unconditional moments for all of the series by randomly drawing

sample of shocks from the high and low persistence processes to generate a pseudo observation

on the growth rate of technology gA,t+1 at each date. We continue to assume that the agent

does not know which process the realization of the technological growth shock is coming from

and must make inferences from observations of the growth rate of the technology process about

the nature of process form which such observations are drawn. Given initial conditions k̂0 =

ks, x̂l0 = 0, x̂h0 = 0, η0 = 0.5, we use the laws of motion for the capital together with the

Kalman filtering algorithm to determine the evolution of the capital stock and beliefs along the

agent’s optimal path. These will constitute the endogenous state variables for the model. Notice

that updating the capital stock depends on using the optimal policy functions for investment

and hours worked as ît = g(k̂t, x̂lt, x̂ht, ηt) and ht = h(k̂t, x̂lt, x̂ht, ηt) evaluated at the current

state (k̂t, x̂lt, x̂ht, ηt). Given the simulated values of ît, ht and gA,t+1, output and consumption

today together with next period’s capital stock are obtained from the production function,

the resource constraint and the law of motion for capital as ŷt = (k̂t)
ah1−a

t , ĉt = ŷt − ît, and

k̂t+1 = (̂it + (1 − δ)k̂t) exp(−gA,t+1). To generate next period’s beliefs which will form next

period’s state vector, we update current beliefs µt = (x̂lt, x̂ht, ηt) given the new observation

gA,t+1 using the Kalman filtering algorithm.8

8Specifically, the filtered beliefs about the cyclical component conditional on the k’th persistence process are
then given by

x̂k,t+1 = ρkx̂kt +Kkνk,t+1, k = l, h,

where the Kalman “surprises” νk,t+1 are given by νk,t+1 = gA,t+1 − ḡ− ρkx̂kt, and the Kalman gain parameters
conditional on the kth persistence process being the true process are given by Kk = ρkΩkf

−1
k , fk = Ωk + σ2

Ak
,

where fk = E[(gAk,t+1 − E(gAk,t+1))
2|gA,1, . . . , gA,t], and Ωk = E[(xk,t+1 − x̂k,t+1)

2|gA,1, . . . , gA,t], k = l, h are
defined as the solution to

Ωk = ρ2kΩk − ρ2kΩ
2
kf

−1
k + σ2

xk
.

The Bayes update ηt+1 shows the posterior belief that the ρl process is the true one and it is given by

ηt+1 =
ηtL(νl,t+1, fl)

ηtL(νl,t+1, fl) + (1 − ηt)L(νh,t+1, fh)
,

where L(νk,t+1, fk) =
1√

(2πfk)
exp

(
−−ν2

k,t+1

2fk

)
.
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Table 3: Parameter Values

β Subjective discount factor 0.988
γ Coefficient of ris k aversion 0.5, 2
α Coefficient of ambiguity aversion 0.8, 2, 5
a Capital share 0.3
δ Depreciation rate 0.025

Note: This table reports parameter choices used
in the simulation of the model variations. The
calibration is at the quarterly frequency. The
share of leisure is implicitly computed from
the intratemporal marginal rate of substitution
between consumption and leisure, assuming a
steady value of hours worked nss = 1/3.

The parameter values used in the simulations are standard to the business cycle literature.

Specifically, the capital share is set at 0.36 and the depreciation at the quarterly frequency

at 0.025. The share of leisure in preferences denoted by the parameter ν is given by 0.3663.

This is based on the steady state values of the model where the share of working time is set

at 1/3, consistent with the finding that households spend one-third of their time working. The

discount rate is set at β = 0.988, which is slightly lower than the value assumed by Prescott

(1986) and implies an annual interest rate of around 4.8%. The estimates of Table 2 imply

that the average growth rate of the technology shock at the quarterly frequency is 0.46%,

which is slightly higher but consistent with the average growth rate of technology based on the

Markov switching model reported in Jahan-Parvar and Liu (2012) as well as earlier estimates

in Kaltenbrunner and Lochstoer (2010) and Croce (2010).

In Table 4, we display results obtained by simulating the model with ambiguity and ambigu-

ity aversion under alternative technology shock processes. The decision rules for the transformed

problem are used to generate levels for the nonstationary series, which are then detrended us-

ing a Hodrick-Prescott filter for quarterly series. The simulated moments are based on a 1,000

simulations of 400 periods, with a burn-in sample of 200 periods. In these simulations, the

estimates of the technology shock processes are obtained by using uninformative priors in their

estimation, as reported in Table 2. While the simulations are done separately for the low per-
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sistence/high variance and high persistence/low variance processes by drawing realizations of

the shocks from these processes, the agent is assumed not to know from which process the

underlying technology shocks is coming from.

The choice of the coefficient of risk aversion and of ambiguity aversion are of importance

in their own right. In the smooth model of ambiguity, ambiguity aversion is inferred from

properties of the functions φ(·), and is measured by the parameter α for the specification of

preferences used in this paper.9 Risk aversion, as usual, is inferred from the properties of the

u(·), and is measured by the parameter γ. Notice, however, that the specification of preferences

employed here does not allow for a separation of risk aversion and the elasticity of intertemporal

substitution (IES). Using the general representation in (2.1) evaluated under deterministic

consumption paths, it is straightforward to show that IES = 1/γ. In our quantitative analysis,

we employ the parameter configurations of γ = 0.5, α = 0.8, γ = 0.5, α = 0.5, γ = 0.5, α = 5,

and γ = 2, α = 5 to control separately for the impact of γ and α.10

Table 4 reports the results for the main model with ambiguity and learning. We find that

the model is, in general, able to replicate standard business cycle facts. Here (i) the volatility

of investment is nearly three times that of output, (ii) output growth is more variable than

consumption, and (iii) the magnitudes of the simulated standard deviations match the standard

deviations of the actual series for the post-1980’s sample period, especially for the case with

γ < 1. However, the model does much more poorly in matching the variability of hours, which

is a standard result in the business cycle literature; see Altug (1989) or Hansen (1985). The

correlations of the simulated series capture the pro-cyclicality of consumption and investment,

though the correlations of the simulated series are lower than the data-based correlations.

In the second panel of Table 4, we increase the value of α to 5, holding the value of γ

constant at 0.5. In this case, under the assumption that the TFP process is drawn from the

high persistence/low variability process, the variability of series such as investment, hours, and

9More generally, Klibanoff et al. (2005) show that ambiguity aversion is defined as an aversion to mean
preserving spreads in the distribution of expected utilities induced by agent’s prior beliefs under a specific
action, which corresponds to −φ′′(x)x/φ′(x).

10Jahan-Parvar and Liu (2012) and Liu and Zhang (2015) discuss the choice of the ambiguity aversion pa-
rameter using the approach of error detection probabilities proposed by Hansen (2007).
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output tend to increase slightly relative to the case with γ = 0.5, α = 0.8 but they tend to fall if

the TFP process is drawn from the low persistence/high variability process. Thus, we find that

increasing the coefficient of ambiguity aversion, while holding constant the value of γ, tends

to increase the difference in the response of the endogenous series depending on whether the

TFP process is drawn from the high persistence/low volatility versus the low persistence/high

volatility process, without changing the overall magnitudes significantly compared to the case

with γ < 1, α = 0.8. Thus, under greater ambiguity aversion, agents engage in precautionary

saving behavior by smoothing their responses under the low persistence/high volatility process

relative to the high process/volatility process. The precautionary behavior of agents under

ambiguity aversion is also noted by Cagetti et al. (2002), Jahan-Parvar and Liu (2012) and Liu

and Zhang (2015), amongst others.

Finally, in the third panel of Table 4, we increase the parameter γ to 2, keeping the value

of α constant at 5. We now observe that the standard deviations of the investment and hours

series fall by nearly 50% and the correlations among the different series increase substantially.

Smaller declines occur in the variability of the output series, while the volatility of consumption

increases slightly. These findings suggest that it is changes in the parameter γ that have a more

significant impact on the results compared to changes in the parameter α. A similar finding is

reported by Liu and Zhang (2015).11

To understand the reasons why this occurs, we refer back to the analysis of Tallarini (2000)

and Backus et al. (2014) regarding the role of uncertainty aversion in real business cycle models

of the type studied here. First, although an increase in α is associated with an increase in

ambiguity aversion, their analysis suggests that this factor tends to have a minor impact on the

behavior of quantities if agents can optimally respond to such uncertainty through their choice

of investment and hours to smooth their consumption over time. In the Online Appendix,

Section D, we generate a log-linear approximation to the model under the assumption of known

11In their sensitivity analysis, they show that changing the value of their ambiguity aversion parameter, η, has
only a minor effect on the volatilities of consumption and investment. Specifically, they find that for η = 30, the
benchmark case, the standard deviations of consumption and investment are given by 1.30 and 5.13, respectively.
Increasing the value of η to 40 reduces these volatilities as 1.35 and 4.89 while reducing the value of η to 20
increases the relevant volatilities as 1.26 and 5.37, respectively.
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persistence (ηt = 0) for the TFP growth process. There we show that the dynamics of the

capital stock is unaffected by the ambiguity aversion parameter, α, as are the coefficients on

the filtered mean of the temporary component of TFP growth, x̂t.
12 These results do not carry

over directly to the more general version of the model, as ambiguity continues to play a role in

the long-run in that case. When ηt > 0 so that learning is never complete, the long-run of the

economy must be described by the stationary distribution for the capital stock, which we have

not characterized. Nevertheless, we would expect the result obtained under the assumption

of known persistence (ηt = 0) to provide insight into the role of ambiguity aversion even in

the case with ηt > 0.13 Another way of understanding the results in Table 4 is to note that

while increasing the value of γ leads to an increase in risk aversion, it corresponds to a decline

in the EIS. Thus, the impact of increasing γ is to make consumers less willing to substitute

consumption across periods. This factor leads to the decline in the volatility of the endogenous

series as well as an increase in their co-movement. Thus, the results in the third panel of Table 4

demonstrate that the impact of reducing the elasticity of intertemporal substitution dominates

the impact of increasing agents’ ambiguity aversion.

These two interrelated results provide insight into the role of intertemporal substitution

versus ambiguity aversion in a Real Business Cycle Model with ambiguity and ambiguity aver-

sion. Moreover, these results do not derive from the form of the preferences or the structure of

shocks assumed to drive the business cycle. Indeed, even in the three-parameter specification of

preferences and a Markov-switching model for the shocks used by Jahan-Parvar and Liu (2012)

and Liu and Zhang (2015), neither risk nor ambiguity aversion have large impacts on the vari-

abilities or correlations involving the endogenous quantity series. Instead, it is changes in the

IES that induce changes in the behavior of aggregate quantities. Indeed, both Jahan-Parvar

12Our approach follows Backus et al. (2014), who perform a log-linear approximation for the solution of the
solution planner’s problem in the non-expected utility and smooth ambiguity cases without learning.

13As Tallarini (2000) and Backus et al. (2014) have argued, this result reflects the full insurance/complete
markets assumption that underlies the social planner’s problem used to generate the business cycle observations.
To demonstrate this result, it is possible to formulate a recursive complete contingent claims equilibrium which
supports the allocations in the social planner’s problem. In this equilibrium, consumers can insure against the
future state as well as the distribution from which that state is drawn. We omit this discussion for brevity’s
sake; details can be found in Altug (2017).
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and Liu (2012) and Liu and Zhang (2015) match the business cycle moments by assuming an

IES of 2. In our case, as the parameter γ is increased from 0.5 to 2, agent’s incentive to substi-

tute consumption across different periods decreases, which tends to induce greater consumption

smoothing across periods. Initially, Kydland and Prescott (1982) argued that attitudes towards

intertemporal substitution in consumption and leisure combined with time lags in investment

and stochastically varying technology shocks could, to a first approximation, generate observed

aggregate fluctuations in output, consumption, investment, and to a lesser extent, hours worked.

Our results show that this finding remains even in a framework that allows for ambiguity and

ambiguity aversion in a theoretically consistent manner, and that incorporates an investment

friction through an irreversibility constraint.14

As another gauge of the impact of ambiguity aversion, we also examine the behavior of the

investment-output ratio. This is close to the value reported for the data, and suggests that the

model is able to reconcile the average value of 0.1568 for the post-1980’s. We observe that the

investment-output ratio is higher for simulations based on draws of the low persistence/high

volatility process: since good realizations of the technology shocks are not expected to persist,

agents form a buffer by increasing their investment relative to output to smooth their consump-

tion over time. We also observe from the bottom panels of Table 4 that due to this phenomenon

output, consumption, investment, and hours worked all become less variable despite the greater

variability of the technology shock process. Similarly, the investment-output ratio tends to in-

crease for the simulations reported in the middle panel of Table 4, as greater ambiguity aversion

leads agents to engage in greater precautionary savings behavior. Jahan-Parvar and Liu (2012)

also emphasize the precautionary saving motive implied by ambiguity aversion in their impulse

response analysis, but the simulated values of the investment-output ratio for the specifications

that they consider are considerably higher than in the data, 0.30 on average in the simulations

compared to 0.19 in the data. They attribute this to the high capital share, which they set at

0.36 to match the relative volatilities of output and consumption. By contrast, we are able to

14Other production-based models with ambiguity aversion such Jahan-Parvar and Liu (2012) and Liu and
Zhang (2015) employ adjustment costs in investment. In separate calculations, we verified that our results are
invariant to the inclusion of adjustment costs in place of investment irreversibility.
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Figure 4: Response to One Std. Dev. Shock to ǫxk,t, k = l, h - Baseline Model

γ = 0.5, α = 0.8 γ = 2, α = 5
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Figure 5: Response to One Std. Dev. Shock to ǫAk,t, k = l, h - Baseline Model

γ = 0.5, α = 0.8 γ = 2, α = 5
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match these volatilities with a much smaller capital share when we set the IES to be greater

than 1 (γ < 1).

Finally, we characterize the behavior of the model by examining the nonlinear impulse re-

sponse functions developed by Koop et al. (1996). We consider the response of each endogenous

variable to a one standard deviation shock to ǫxk,t and ǫAk ,t, k = l, h. As before, the decision

rules for the transformed problem are used to generate levels for the nonstationary series, which

are then detrended using a Hodrick-Prescott filter for quarterly series. We generate the non-

linear IRF’s for 40 periods, with a burn-in sample of 200 periods, and consider the average

response over 1000 simulations. The case with γ = 0.5, α = 0.8 case versus the case with

γ = 2, α = 5 are graphed in the top and bottom two panels, respectively. In Figures 4 and
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5, the ‘red’ line corresponds to the generalized IRF for the high persistence economy and the

‘black’ line for the low persistence economy. Since a shock to the cyclical component of the

technology shock for the high persistence economy ǫxh,t
has a longer lasting impact on tech-

nological growth, the responses of the variables in the high persistence economy are always

larger: output, consumption, and productivity increase on impact and converge to higher levels

monotonically compared to the low persistence economy while the response of investment and

hours is hump-shaped, initially rising and falling thereafter. By contrast, the impact of shocks

to the cyclical component of technology ǫxl,t
for the low persistence economy have much more

short-lived and hence, muted effects. On the other hand, there is very little difference in the

response to shocks to ǫAk,t for the high versus low persistence economies. Since the estimated

standard deviations for ǫAl,t and ǫAh,t are very close, this is reflected in the response to such

shocks. In this case, a temporarily high growth rate of productivity leads to monotonic in-

creases in output, consumption, and labor productivity while hours and investment go up on

impact but fall to lower levels later.

The IRF’s for the ǫxk ,t and ǫAk,t shocks look very similar to the case with γ = 2, α = 5.

However, there are some differences in the magnitudes of the responses, albeit small. For the

case with γ = 2, α = 5, investment and hours worked show a larger initial response relative to

the case with γ = 0.5, α = 0.8 in response to a ǫAk ,t shock while the response of consumption

and output are similar. With a lower IES and greater ambiguity aversion under the former case,

investment and hours worked tend to rise more in response to a positive productivity shock to

maintain the similar consumption and output levels under both cases. Nevertheless, our analysis

shows that the variation in the unobserved component, xt+1, is small, and the behavior of the

different components of TFP growth are similar for the low versus high persistence processes.

This is evident, for example, in the impulse responses with respect to the ǫAl,t and ǫAh,t shocks.

4 Information and learning

One of the issues that the above analysis has to with the informativeness of the observed TFP

series for the cyclical component of productivity, xk,t+1. Since ambiguity aversion derives from
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the nature of this process estimated under alternative scenarios, it is important to examine

the sensitivity of our results to alternative estimates of the TFP process. We now consider

some alternative experiments regarding the TFP process, which are intended to illustrate the

dynamics of learning under ambiguity aversion about the postulated TFP processes.

4.1 Known persistence

In Table 5, we initially conduct a counterfactual experiment by assuming that the agent knows

for sure the process generating the unobserved component of TFP growth, namely, which

process the persistence and variance parameters (ρk, σ
2
xk
) are coming from, even if they do not

observe the underlying cyclical component xk,t and must infer it using observations on TFP

growth up to time t. We consider simulations separately with a single process with known

persistence equal to ρ = 0.30 or ρ = 0.85, and continue to allow for non-zero values of α as in

Table 4. Here we find that when the agent knows the true process governing the behavior of

the cyclical component of TFP growth, his/her behavior tends to exhibit much lower volatility

than when he/she does not know the true process. When agents are unsure about the process

governing the cyclical component, output and investment becomes substantially more variable

and consumption less. By contrast, in the versions of the model with a single known process

for the cyclical component, agents are able to act on this knowledge and hence, tend to smooth

their optimal investment and hours choices, which also leads to less fluctuations in output and

consumption. These results suggest that there is a negative relationship between “confidence”

and volatility in our ambiguity model, which reflects the endogenous response of economic

agents to additional knowledge about underlying sources of cyclical fluctuations.

4.2 Informative priors

To have a more refined view of the impact of information and learning, we also compare the

business cycle moments generated by the model under estimates of the TFP process using unin-

formative priors to those generated by using estimates obtained with more informative priors.

We may view more informative prior distributions as a measure of the agent’s “confidence”
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regarding the nature of the underlying TFP process, as described in Appendix D.

The simulation results in Table 6 based on the estimates on the estimates of Panels A and B

of Table C.3 in the Appendix show that when agents are less sure about the process governing

the cyclical component of TFP, as in Panel A, optimal investment and hours choices become

more variable while the variability of output does not change substantially. By contrast, in

the versions of the model with a more informative priors in the estimation of the temporary

component of the underlying TFP process, as in Panel B, agents are able to act on this knowl-

edge and hence, tend to smooth their optimal investment and hours choices, which also leads

to lower fluctuations in output, investment and hours worked but slightly higher volatility for

consumption as the residual series. These conclusions are, in general, valid when the tech-

nology process is drawn from the high persistence/low variability or the low persistence/high

variability technology process and under the alternative parameter sets, γ = 0.5, α = 0.8 versus

γ = 2, α = 5.15

We can also examine the behavior of the investment-output ratio under these parameter

configurations. When agents know the process generating realizations of the unobserved cyclical

component of TFP growth, the average level of the investment-output ratio is higher compared

to the situation in which the nature of these processes must also be inferred based on the past

history of observed TFP growth. Thus, we find that lack of information about fundamentals in

the economy tends to depress average investment as a fraction of GDP, as reported in Table 6,

compared to the full information case reported in Table 5. This occurs regardless of whether the

TFP shocks are drawn from the high persistence/low volatility versus the low/persistence/high

volatility economy. Second, the investment-output ratio is lower, the higher the value of γ (or,

the lower the EIS), suggesting that the average level of investment relative to GDP responds

to consumers’ willingness to substitute consumption across different periods. Finally, as in

Table 4, we observe that changes in the informativeness of the underlying TFP series have the

effect of reducing i/y in the high persistence/low economy economy while increasing it in the

15However, for the case with γ = 2, α = 5, conditional on the observations being drawn from the process with
ρk = 0.30, we observe that the variability of output, investment, and consumption increases slightly under the
Panel B estimates with more informative priors.
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Figure 6: Response to One Std. Dev. Shock to ǫxk ,t, k = l, h - Simulations for Panel A Estimates

γ = 0.5, α = 0.8 γ = 2, α = 5
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low persistence/high volatility economy, suggesting the use of investment/savings as a buffer

against variations in the underlying TFP process.

Finally, we report the impulse response functions for the Panel B estimates for the γ = 0.5,

α = 0.8 and γ = 2, α = 5 cases.16 Figure 6 shows that the responses to a one-standard deviation

shock to ǫxk,t are more differentiated for low versus high persistence processes (shown in ‘black’

versus ‘red’ in the figure) compared to the baseline case displayed in Figure 4. This occurs

because a more informative prior on the low persistence process leads to greater differentiation

in the standard deviation of the shocks. The differences in the impulse responses are especially

pronounced for the γ = 0.5, α = 0.8 case compared to the one for γ = 2, α = 5, implying that

a lower intertemporal substitution elasticity in the latter case tends to mitigate the response of

the quantity series. Figure 7 shows that for the case of the ǫAk,t shocks, there is less difference

in the impulse responses precisely because there is less differences in the estimated standard

deviations between the high and low persistence processes. One difference between the response

of output for the γ = 0.5, α = 0.8 versus the γ = 2, α = 5 cases is that output initially rises

faster and declines to a lower level in the former case. This may have to do with the behavior

of hours worked, which also initially rises faster in response to a positive productivity under

the former case but also tends falls to a lower level.

This discussion shows that information and learning effects generate additional transmission

16The impulse responses for the Panel A estimates were not substantially different; hence, we omit them for
brevity’s sake.
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Figure 7: Response to One Std. Dev. Shock to ǫAk,t, k = l, h - Simulations for Panel A

γ = 0.5, α = 0.8 γ = 2, α = 5
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mechanisms under ambiguity and ambiguity aversion that reflect the endogenous response of

economic agents to additional knowledge about underlying sources of cyclical fluctuations. This

is a transmission mechanism that is missing from standard business cycle models, and it arises

from the role of ambiguity and ambiguity aversion in driving agents’ actions. Furthermore,

unlike the framework of Ilut and Schneider (2014) where ambiguity and ambiguity aversion

are modeled in terms of the behavior of the worst case mean of technology, our framework

allows a separate treatment of the effects of ambiguity through information and learning about

two separate processes versus ambiguity aversion through agents’ attitudes towards unknown

lotteries.

5 Measuring uncertainty and ambiguity aversion: The

risk-free rate

In his original analysis, Tallarini (2000) showed that in the type of environments with full risk

sharing that we have considered here, uncertainty aversion will tend to manifest itself in asset

prices such as the risk-free rate (see also Backus et al. (2014)) whereas variation in quantity

variables will reflect the effects of intertemporal substitution, as in our analysis above. In this

section, we characterize the behavior of the risk-free rate, and argue that it may serve as an

endogenous measure of ambiguity implied by our model. As we show below, the risk-free rate

tends to reflect the distorted beliefs impled under ambiguity aversion: it declines with the
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distorted mean and increases with the distorted variance of the posterior distribution regarding

the unknown cyclical component of TFP growth. Since the role of ambiguity aversion is to

accentuate any increases in exogenous uncertainty regarding the cyclical component of TFP

growth, we may view the risk-free rate as reflecting the endogenous response to such changes.

As further evidence in this regard, we also present results for the risk-free rate using sectoral

TFP data available from Bloom et al. (2012), and compare our implied ambiguity measures

with their measures of uncertainty at the sectoral level.

5.1 The risk-free rate

Using the notation in Section 2.5, the (gross) risk-free rate Rf for the model with ambiguity

aversion satisfies

1 = βRfΥtEµt

{
ξtExt

[
exp(((1− γ)ν − 1)gA,t+1)

(
λt+1

λt

)]}
, (5.2)

where Υt and ξt are defined by equations (2.10) and (2.9) and λt = ν(ĉνt l
1−ν
t )−γ(ĉt/lt)

ν−1. Recall

that µt accounts for the second-order beliefs of agents. We can re-write this by making explicit

use of the second-order distribution as

1 = βRfΥt

{
ηtEx̂l,t

[
ξ
(l)
t Exl,t

(
exp(((1− γ)ν − 1)gAl,t+1)

λ
(l)
t+1

λt

)]

+(1− ηt)Ex̂h,t

[
ξ
(h)
t Exh,t

(
exp(((1− γ)ν − 1)gAh,t+1)

λ
(h)
t+1

λt

)]}
. (5.3)

In what follows, we derive a log-linear approximation to the risk-free interest rate under

the assumptions in Collard et al. (2012), first, by considering the case with known persistence

(ηt = 0) for the growth rate of the TFP process and second, by treating the distorted or “as

if” posterior µ̃t ≡ ξt(xt) ⊗ N(x̂t,Ω), where the distortion arises from the role of ambiguity

aversion, as a normal density with variance Ω but a different mean, x̃t. Using the assumptions,

let Et ≡ Ex̂t
Ext

and Ẽt ≡ Eµ̃t
Ext

≡ Ex̃t
Ext

. Also, Ṽ art(xt) = V arx̃t
(xt) = Ω and V art(xt) =

V arx̂t
(xt) = Ω and all ǫ terms have expectation zero under both Ẽt and Et since the terms have

expectation zero conditional on xt.
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Under these assumptions, the expression for the risk-free rate becomes

1 = βRfΥtẼt [exp (log(λt+1/λt) + ((1− γ)ν − 1)(ḡ + ρx̃t + σxǫx,t+1 + σAǫA,t+1))]

= βRfΥt exp

[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ ((1− γ)ν − 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2

x + σ2
A) +

((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
,

which implies

rf = − log(β)− log(Υt)−
[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ (((1− γ)ν)− 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2

x + σ2
A) +

((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
,

where rf = log(Rf). Now

log(Υt) = log Ẽt

(
Ĵ(k̂t+1, x̂t+1) exp(ν(1− γ)gA,t+1)

)
−α

+
α

1− α
log Ẽt

(
Ĵ(k̂t+1, x̂t+1) exp(ν(1− γ)gA,t+1)

)1−α

= −αẼt

(
log(Ĵ(k̂t+1, x̂t+1)) + (ν(1 − γ)gA,t+1)

)

+αẼt

(
log(Ĵ(k̂t+1, x̂t+1)) + (ν(1− γ)gA,t+1)

)
+ variance terms,

so that the direct effect of α on the risk-free interest rate cancels out as before. Based on these

rules, we rewrite the risk-free rate as

rf = − log(β)−
[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ ((1− γ)ν − 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2

x + σ2
A) +

((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
+ extra variance terms

To understand the impact of ambiguity aversion on the risk-free rate, we note that the log-

linear rule for the risk-free interest implies that rf depends positively on the distorted posterior

mean, x̃t, and negatively on the distorted posterior variance, Ṽ art(xt).
17 From the definition

17Notice that the term ((1 − γ)ν − 1) is negative for all values of γ ≥ 1 since 0 < ν < 1.
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of ξt, since the distorted posterior mean declines with increases in α due to the endogenous

tilting of beliefs under ambiguity aversion while the distorted posterior variance increases with

α, we expect that an increase in ambiguity aversion will tend to reduce the risk-free rate. This

may be interpreted as reflecting the increased demand for risk-free assets in an environment

with endogenous doubt and pessimism. These effects on the risk-free rate are present in the

endowment economy considered by Collard et al. (2012). In their case, a term similar to Υt is

equal to unity, and the ratio of the Lagrange multipliers depends only on consumption growth,

which they take as exogenous. In our case, the term λt+1/λt depends on consumption and

leisure choices, which are determined as functions of the transformed capital stock and the

evolution of agents’ beliefs.

5.2 Simulations

In Table 7, we report the average interest rate and the mean and standard deviation of “as

if” or distorted beliefs that are implied by the smooth ambiguity model. We simulate 100 dif-

ferent economies of 275 observations each corresponding to the sample period 1947:I-2015:IV,

and report values after discarding the burn-in sample of 1947:I-1978:IV. As in our other sim-

ulations exercises, we implement the simulations under the assumption that the TFP shocks

are drawn from the high persistence/low variability versus low persistence/high variability pro-

cesses. However, since the values of the average interest rate did not change significantly across

the processes with high or low persistence, we only report the values for the high persistence

process. We also consider the case of γ = 2, α = 5 throughout the simulations.18

For future reference, we note that the mean and variance of the distorted or “as if” posterior

distribution allow for uncertainty about the persistence parameter, and incorporate the proba-

bility that an agent places on the probability of the low versus the high persistence process are

given as follows:

x̃t = ηt

∫
∞

−∞

(xl,t)ξ
(l)
t dF (xl,t)dxl,t + (1− ηt)

∫
∞

−∞

(xh,t)ξ
(h)
t dF (xh,t)dxh,t,

18It is also possible to use a higher value of β = 0.9926 (see, for example, Christiano and Eichenabum (1992)),
which will tend to reduce the risk-free rate further but our focus here is on understanding the role of ambiguity.
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and

Ṽ art(xt) = ηt

∫
∞

−∞

(x2
l,t)ξ

(l)
t dF (xl,t)dxl,t + (1− ηt)

∫
∞

−∞

(x2
h,t)ξ

(h)
t dF (xh,t)dxh,t − x̃2

t .

In Table 7, we first report results for the baseline model with uninformative priors as well

as the case with the Panel B estimates for the aggregate TFP process. These results show that

a lower distorted mean and higher distorted variance tend to reduce the risk-free rate, as we

argued above. However, one observation that we can make regarding the results for the baseline

model as well as the Panel B estimates is that the variation in the distorted beliefs under these

estimates is quite small. Hence, the notion of a “flight to safety” in response to the induced

endogenous pessimism does not manifest itself in significantly low interest rates.

To obtain a better gauge of the role of ambiguity and ambiguity aversion, we conduct

another counterfactual exercise by asking whether different measures of the underlying TFP

process may provide additional insights. For this purpose, we re-estimate TFP growth processes

using annual sectoral TFP measures provided by Bloom et al. (2012) for 4-digit manufacturing

industries in the 2-digit SIC groups 24 Lumber and Wood Products, except Furniture, 28

Chemicals and Allied Products, 29 Petroleum Refining and Related Industries, 30 Rubber and

Miscellaneous Products, 31 Leather and Leather Products, 33 Primary Metal Industries, 34

Fabricated Metal Products (except Machinery and Transportation Equipment), 35 Industrial

and Commercial Machinery and Computer Equipment, 36 Electronic and Other Electrical

Equipment and Components (except Computer Equipment), and 37 Transportation Equipment.

As a gauge of the impact of uncertainty versus ambiguity, we also report the uncertainty

measures computed by Bloom et al. (2012) for these industries.19

The results in Table 7 show that industries for which the distortions induced by ambiguity

19Bloom et al. (2012) use the Census of Manufacturers and the Annual Survey of Manufacturers to construct
an establishment-level panel data set. To generate their TFP uncertainty measures, they define value-added
TFP for each establishment j in industry i at time t as log(zj,i,t = log(vj,i,t)−αS

i,t log(k
S
j,i,t)−αE

j,i,t log(k
E
j,i,t)−

αN
i,t log(nj,i,t), where vj,i,t denotes value-added, k

S
j,i,t is the stock of structures, kEj,i,t is the stock of equipment,

and nj,i,t is total hours worked, and αk
i,t, k = S,E,N are the cost shares of the different inputs. TFP shocks ej,i,t

are then defined as the residual from establishment-level log TFP from a first-order autoregressive equation with
time and industry dummies. At the industry level, they then use interquartile range (IQR) and the weighted
mean of absolute values as uncertainty measures. See their Appendix A for further descriptions.
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and ambiguity aversion are relatively large (as shown by the distorted mean and standard

deviation of x̃t) also tend to display lower values of the risk-free rate. These industries include

Petroleum Mining (2911), Plastic Pipes (3084), Steel Wiredrawing, Steel Nails and Spikes

(3315), Internal Combustion Engines (3519), and Motors and Generators (3621). 20 Comparing

the uncertainty measures used by Bloom et al. (2012) with our induced ambiguity measures, we

find that for an industry such as Petroleum Mining (2911) which has a very high uncertainty

measure, there is also evidence for the presence of significant ambiguity regarding the cyclical

component of the underlying TFP process. This is evident in the low distorted mean and

relatively high distorted standard deviation, which then yield a low value of the real interest rate

of 1% per quarter. Given the volatile and unpredictable nature of technological developments

in this industry such as fracking, one may rationalize the presence of high uncertainty and

ambiguity for this sector. However, we observe that the uncertainty measures in Bloom et al.

(2012) do not necessarily correlate with our ambiguity measures for all of the industries. As

an example, Internal Combustion Engines (3519) has a high distorted standard deviation and

a low implied risk-free rate equal to that for Petroleum Mining but its uncertainty measure

is considerably lower compared to Petroleum Mining. On the other hand, an industry such

as Shipbuilding and Repairing (3731) has an uncertainty index similar to that for Internal

Combustion Engines but the distorted standard deviation for the cyclical component of TFP

growth is relatively small, implying a relatively high risk-free rate.

To examine the relationship between the uncertainty index and our implied measures of

ambiguity, we consider four additional industries which have some of the highest uncertainty

indices, namely, Electronic Computers (3571), Soybean Oil Mills (2075) and Pesticides and

Agricultural Chemicals, Not Elsewhere Classified (2879) and one industry with one of the lowest

20In this section, we do not report the business cycle moments implied under the sectoral TFP estimates,
though they are available upon request. Nevertheless, we choose industries for which the relative volatilities
of output, consumption and investment are comparable to the aggregate TFP estimates, although the overall
volatilities may differ across different industries. Another issue which we have not addressed when using the
sectoral TFP estimates in the aggregate business cycle model is the existence of increasing returns to scale
in production at the sectoral level, which would lead to model mis-specification. Hall (1988, 1990) argued for
the existence of increasing returns and significant market power in many US industries. Subsequently, however,
authors such as Basu and Fernald (1997) and Burnside (1996) suggest that US manufacturing industry essentially
exhibits constant returns to scale.
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uncertainty indices, Glass Containers (3221). We find that the distorted standard deviation

for Pesticides and Agricultural Chemicals is the highest among all of the industries that we

consider, and this translates into a relatively low value for the risk-free rate. Thus, we find that

the information conveyed by the uncertainty and ambiguity measures corroborate each other

for this industry. This is also the case for Petroleum Mining, which has a low distorted mean

and a high uncertainty measure, as we argued earlier. However, Electronic Computers possesses

a high distorted variance but also it also has distorted cyclical mean that is very large, implying

a high value for the risk-rate. Evidently, the uncertainty measures reported by Bloom et al.

(2012) and the ambiguity measures that we report can diverge for key industries. Conversely,

for a low uncertainty industry such as Glass Containers, a relatively small distorted mean and

a relatively low distorted standard deviation lead to a moderately low interest rate.

To understand the reasons for these findings, we display the filtered means x̂lt and x̂ht for

the different processes in Figure 8. We observe that for the baseline model based on aggregate

TFP, the values of both x̂lt and x̂ht are very small. Moreover, there is very little variation

in either of these measures, implying very low variation for the distorted variable, x̃t, as well.

When we allow for a more informative prior on the low persistence process, as in the Panel

B model, the filtered means display more variability, implying that the distorted variance also

tends to increase compared to the baseline model. When we turn to the sectoral results, the

variability of the filtered means increases significantly, which, in turn, magnifies the distorted

variances. Another way of understanding the impact of ambiguity is to note that an ambiguity-

averse agent endogenously behaves as if the uncertainty is more persistent and severe following

negative shocks than in normal times. From Figure 8, we observe that for an industry such as

Petroleum Mining, the mean of the high persistence process tends display significant drops, and

to fall below the mean of the low persistence process. Since ambiguity-averse agents forecast

TFP growth by putting more weight on the “worst case persistence”, in situations with negative

shocks where x̂ht < x̂lt, the worst case persistence is ρh, suggesting that the economy will remain

in the bad state for a long time. This tends to increase the endogenous distortions and to lead

to greater ambiguity compared to situations for which x̂ht does not fall systematically below x̂lt.
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Figure 8: Filtered beliefs underlying the risk-free rate values - Aggregate TFP and Industry
Results
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Figure 9: Filtered beliefs underlying the risk-free rate values - Aggregate TFP and Industry
Results (cont’d)
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By contrast, for Electronic Computers, we observe the converse, namely, that the mean of the

high persistence process, x̂ht, rose above that of the low persistence process, x̂lt, strongly during

the dotcom bubble in the early 2000’s. When x̂ht > x̂lt, the worst case persistence is ρl, which

suggests that the good state is relatively transient. Given the very large deviation displayed

by the cyclical mean during such a good state, the distortion tends to be relatively minor for

this industry, despite its very large uncertainty measure. This leads to a higher risk-free rate,

which is consistent with the underlying theory.

6 Conclusion

In this paper, we have examined the cyclical dynamics of a Real Business Cycle model with

ambiguity averse consumers and investment irreversibility using the smooth ambiguity model

of Klibanoff et al. (2005, 2009). In this model, agents do not know which distribution the

unobserved temporary component of TFP growth is coming from, and learn about it based on

observations of current and past values of the model’s variables. The existence of such ambiguity

combined with ambiguity aversion on the part of agents may generate the cyclical dynamics

of real variables such as consumption, investment and output) through the asymmetric effects

of uncertainty aversion in booms versus recessions. Surprisingly, our results imply that the

intertemporal substitution in consumption and leisure combined a real investment friction such

as irreversible investment operating through the transmission channels of the standard Real

Business Cycle model dominate the impact of uncertainty aversion when agents can choose

to optimally smooth consumption through investment and hours worked choices in response

to labor-augmenting technology shocks. However, ambiguity and ambiguity aversion affect

endogenous choices through information and learning effects.

We interpret these results as implying that, on average, the behavior of quantities may be

well approximated by the optimal response of consumption, investment, and hours worked to

exogenous changes in productivity, as Kydland and Prescott (1982) originally argued. As the

history of Real Business Cycle analysis has shown, modifications of the original model of cycli-

cal fluctuations proposed by Kydland and Prescott (1982) have allowed us to understand other
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transmission mechanisms that were not included in the original model of aggregate fluctuations.

What we have shown here is that the addition of ambiguity and ambiguity aversion in a theoret-

ically well grounded and empirically consistent manner generates precautionary saving motives

in response to uncertainty shocks but the main mechanisms of the Real Business Cycle involv-

ing intertemporal substitution effects remain. Nevertheless, our results have revealed a role

for learning and information even in the highly aggregative environment considered, suggesting

ambiguity averse agents’ actions will be affected by the flow of information about fundamentals

across the business cycle.

In his original analysis, Tallarini (2000) showed that in the type of environments with full

risk sharing that we have considered here, uncertainty aversion will tend to manifest itself in

asset prices. Here we have examined the behavior of the risk-free rate, and shown that the

endogenous distortion in beliefs arising from the behavior of the temporary component of TFP

growth will tend to amplify the behavior of asset prices. In our analysis, we have not considered

the behavior of the risky rate of return nor quantities such as the equity premium. However,

Collard et al. (2012) note that “ambiguity aversion gets the first moment of equity premium

right by holding down the risk-free rate while affecting the risky rate only very marginally.”

Tallarini (2000) notes that generating an equity premium that is consistent with the data in

a production economy requires the addition of frictions of adjustment costs or other frictions

that will generate variation in the price of capital. While we have considered the presence of

a friction such as investment irreversibility, our focus is not directly on accounting for various

asset pricing phenomena considered in the literature.

Undoubtedly, uncertainty and ambiguity aversion are important factors deriving agents’

decisions to work, to invest, and to consume. Our results suggest that relaxing the assumption

of complete markets/perfect insurance and introducing various forms of market incompleteness

may work towards generating a greater role for uncertainty and ambiguity aversion. Second, an

environment that considers individual heterogeneity may be more likely to capture the impact

of such uncertainty aversion. A third issue has to do with the measurement of TFP shocks in

order to gauge their influence on business cycles. As we have shown, the highly aggregative
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nature of the TFP process considered here does not lead to significant sources of uncertainty

and ambiguity. Hence, using more disaggregated measures of productivity changes at the firm

or industry level in a general equilibrium economy with multiple sectors may provide more

useful approaches to generating the impact of uncertainty and ambiguity aversion. We leave

exploring these avenues for future work.

A The stationarity inducing transformations

In the following discussion, we consider generating stationarity-inducing transformations un-

der alternative parameterizations for KMM smooth ambiguity preferences. These include the

power-power and log-exponential pairings for the current utility and ambiguity functions, u(·)
and φ(·), respectively. These specifications are similar to the cases considered by Ju and Miao

(2007). We make use of the generic social planner’s problem described of Section 2.3 of the

paper.

Case (i)

In this case, u(c) = (cνl1−ν)1−γ/(1 − γ), γ ≥ 0, 0 ≤ ν ≤ 1 and φ(x) = x1−α/(1 − α), α ≥ 0.

Using y = φ(x), we can show that

φ−1(y) = [(1− α)y]
1

1−α .

Substitute for u(·), φ(·), φ−1(·) into the generic representation for the indirect value function J

as follows.

J(kt, µt, At) = max
ct,it,nt

{
(cνt l

1−ν
t )1−γ

1− γ
+

β

1− γ

[
(1− α)Eµt

(
[Ext

(1− γ)J(kt+1, µt+1, At+1)]
1−α

1− α

)] 1
1−α

}
.

We argue that the stationarity inducing transformation is defined in terms of the transformed

variables of the model as

{
ĉt, ît, k̂t, ŷt

}
=

{
ct
At

,
it
At

,
kt
At

}
.
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Using the homogeneity of the indirect value function, we have that

J(kt, µt, At) = Ĵ(k̂t, µt)A
ν(1−γ)
t . (A.1)

Using this relationship, dividing both sides of the indirect function by A1−γ
t and the con-

straints by At, we obtain

Ĵ(k̂t, µt) = max
ct,it,nt





(cνt l
1−ν
t )1−γ

(1− γ)A
ν(1−γ)
t

+
β

1− γ


Eµt



[
Ext

(1− γ)Ĵ(k̂t+1, µt+1)A
ν(1−γ)
t+1

A
ν(1−γ)
t

]1−α





1
1−α





subject to

ct
At

+
it
At

≤ ka
t (Atnt)

1−a

At
,

kt+1

At
= (1− δ)

kt
At

+
it
At

,

it
At

≥ 0,

Hence, the transformed value function satisfies

Ĵ(k̂t+1, µt) = max
ĉt ,̂it,nt

{
(ĉνt l

1−ν
t )1−γ

1− γ
+

β

1− γ

[
Eµt

([
Ext

(
(1− γ)Ĵ(k̂t+1, µt+1)

)
(exp(ν(1− γ)gA,t+1)

]1−α
)] 1

1−α

}
(A.2)

subject to the constraints

ĉt + ît ≤ k̂a
t ,

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

ît ≥ 0.

Notice that the assumed form of the indirect value function yields a well-defined representation

of the power-power variety of smooth ambiguity preferences with α > γ and γ > 0. When

γ < 1, the affine transformation by 1 − γ does not matter. By contrast, when γ > 1, the
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representation involves taking a power of a positive function, (1− γ)Ĵ(k̂t, µt).

Case (ii)

In this case, u(c) = ln(c) and φ(x) = − exp(−αx)/α. Again substitute for u(·), φ(·), φ−1(·) into
the generic representation for the indirect value function J as follows.

φ−1(x) = − 1

α
ln(−αy)

J(kt, µt, At) = max
ct,it,nt

{
ln(ct) + ln(lt)−

β

α
ln [Eµt

(exp(−αExt
J(kt+1, µt+1, At+1)))]

}

We argue that the following transformation will be stationarity inducing:

{
ĉt, ît, ŷt, k̂t

}
=

{
ct
At

,
it
At

,
yt
At

,
kt
At

}
,

where

J(kt, µt, At) = Ĵt(k̂t, µt) +
ln(At)

1− β
.

Making these substitutions for Jt and Ĵt yields

Ĵ(k̂t, µt) = max
ct,it,nt

{
ln(ct) + ln(lt)−

ln(At)

1− β
− β

α
ln [Eµt

(exp (−αExt
J(kt+1, µt+1)))]

}

= max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α

(
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

ln(At+1)

1− β

)))]
+

α ln(At)

1− β

)}

= max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

ln(At+1)

1− β

)
· A

α
1−β

t

))]}
.

Therefore, the transformed problem using the guess function for Ĵ(k̂t, µt) that we specified

above is expressed as

Ĵ(k̂t), µt) = max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

gA,t+1

1− β

)))]}
(A.3)

subject to the constraints defined above.
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B Numerical solution approach

We now describe how to numerically solve the social planner’s problem described in Section 2.3.

Our task is we determine the function Ĵ(k̂t, x̂l,t, x̂h,t, ηt) for all values of the normalized capital

stock, k̂t, and for the variables specifying beliefs, x̂l,t, x̂h,t, ηt). Unlike Collard et al. (2016) who

consider an endowment economy, we also need to calculate the optimal investment policy as

part of the numerical solution for the indirect value function. Notice that the optimization

routine needs to account for the inequality constraint on the choice of ît.
21 We use the method

of value iteration with Chebyshev interpolation, which involves approximating the function

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) by a parametric function whose coefficients are determined according to a

minimum residual method; see Judd (1998)

We begin by explicitly writing the expectations that appear in this formulation.

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ĉt,nt ,̂it

{
((ĉt

ν l1−ν
t )1−γ

1− γ
+

β

[
ηt

(∫
∞

−∞

(∫ ∫
∞

−∞

Ĵ(k̂
(l)
t+1, x̂

(l)
h,t+1, x̂

(l)
l,t+1, η

(l)
t+1) exp(ν(1− γ)gAl,t+1)dF (εl,t+1)

)1−α

dF (xl,t)

)
+

(1− ηt)

(∫
∞

−∞

(∫ ∫
∞

−∞

Ĵ(k̂
(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
l,t+1, η

(h)
t+1) exp(ν(1− γ)gAh,t+1)dF (εh,t+1)

)1−α

dF (xh,t)

)] 1
1−α



 .

subject to

ĉt + ît ≤ k̂a
t n

1−a
t ,

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

lt + nt ≤ 1,

ît ≥ 0.

Here x̂
(k)
h,t+1, x̂

(k)
l,t+1, η

(k)
t+1 are functions of εk,t+1 = (ǫxk,t+1, ǫAk,t+1)

′, k = l, h, which is a 2 by 1 vector

standard normal shocks and η
(l)
t+1 is the posterior probability at time t+ 1 that the model with

21For details of the solution procedure, see Ju and Miao (2012), Jahan-Parvar and Liu (2012), Collard et al.

(2016), and Liu and Zhang (2015), among others.
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ρl is the true data generating process. Notice that next period’s capital stock is also indexed by

the different stochastic processes for the technology shock next period that is assumed to be the

true process. F (εk,t+1), k = l, h are both bivariate independent standard normal distributions

while F (xk,t), k = l, h is a normal distribution with mean x̂k,t and variance Ωk, which is defined

below.

B.1 Updating beliefs

The updates for x̂
(i)
k,t+1 are obtained using the Kalman filter algorithm as follows:

x̂
(l)
l,t+1(εl,t+1) = ρlx̂l,t +Klν

(l)
l,t+1,

x̂
(l)
h,t+1(εl,t+1) = ρhx̂h,t +Khν

(l)
h,t+1,

x̂
(h)
l,t+1(εh,t+1) = ρlx̂l,t +Klν

(h)
l,t+1,

x̂
(h)
h,t+1(εh,t+1) = ρhx̂h,t +Khν

(h)
h,t+1,

where ν
(i)
k,t+1, (i) = l, h, k = l, h are the “surprises”. For example, when the DGP is (i) = l and

the filter uses ρk, k = h, the surprise is defined as

ν
(l)
h,t+1 = gAl,t+1 − ḡ − ρhx̂h,t

= ḡ − ḡ + ρlxl,t − ρhx̂h,t + σxl
ǫxl,t+1 + σAl

ǫAl,t+1

= ρlxl,t − ρhx̂h,t + σxl
ǫxl,t+1 + σAl

ǫAl,t+1.

The Kalman gain parameters, Kk, k = l, h, depending on whether the low or high persistence

model is assumed to be the true model, respectively, are

Kk = ρkΩkf
−1
k , fk = Ωk + σ2

Ak
,

where fk = E[(gAk,t+1 −E(gAk,t+1))
2|gA,1, . . . , gA,t], and Ωk = E[(xk,t+1 − x̂k,t+1)

2|gA,1, . . . , gA,t],

k = l, h are defined as the solution to

Ωk = ρ2kΩk − ρ2kΩ
2
kf

−1
k + σ2

xk
.22
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The Bayes update of ηt is obtained as follows:

η
(l)
t+1(εl,t+1) =

ηtL(ν
(l)
l,t+1, fl)

ηtL(ν
(l)
l,t+1, fl) + (1− ηt)L(ν

(l)
h,t+1, fh)

,

η
(h)
t+1(εh,t+1) =

ηtL(ν
(h)
l,t+1, fl)

ηtL(ν
(h)
l,t+1, fl) + (1− ηt)L(ν

(h)
h,t+1, fh)

,

where the likelihood is

L(ν
(i)
j,t+1, fj) =

1

2π
√
fj

exp

(
−
(ν

(i)
j,t+1)

2

2fj

)
.

B.2 The numerical algorithm

Following the recent literature (see, e.g. Walker et al. (2014), we approximate the indirect value

function Ĵ(k̂t, x̂l,t, x̂h,t, ηt) by a parametric function of the form

Φ(Xt) = exp


 ∑

ik,ii,ih,iη∈Υ

cik,il,ih,iηTik(k̂t)Til(x̂l,t)Tih(x̂h,t)Tiη(η̂t)


 , (B.1)

where Xt = (k̂t, x̂l,t, x̂h,t, η̂t) denotes the vector of state variables. Notice that in the full

information case, the vector of state variables is given by Xt = (k̂t, xt) where xt is temporary

component of the technology shock. In this expression, the set of indices is defined as Υ = {iz =
1, . . . , nz; z ∈ {k, l, h, η}|ik + il + ih + iη ≤ max(nk, nl, nh, nη)}. This definition assumes that

we are considering a complete basis of polynomials. In this expression Tn(·) is the Chebyshev

22These results are obtained by applying the Kalman filter algorithm to the state and measurement equations
as

xk,t+1 = ρkxk,t + σxk
ǫxk,t+1, k = l, h,

gAk,t+1 − ḡ = xk,t+1 + σAk
ǫAk,t+1, k = l, h.

The expression for the gain parameters Kk and the variances of the filtered estimates of xk,t denoted Ωk are
obtained as a direct application of the Kalman filter algorithm. A similar application of the Kalman filter yields

the expressions for x
(i)
k,t+1 and the surprises ν

(i)
k,t+1 for k = l, h and i = l, h. See Anderson and Moore (1979),

Ch. 3.
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functions T (·) are defined as the unique polynomials satisfying

Tn(x) = cos(n arccosx),

or equivalently, Tn(cos(ν)) = cos(nν). Using a recursive formulation, we have T0(x) = 1, T1(x) =

x and Tn+1(x) = 2xTn(x)−Tn−1(x). Using the definition that cos
(
(2k + 1)π

2

)
= 0, it is possible

to show that the roots of Tn are

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n.

The roots of the Chebyshev polynomial are also called Chebyshev nodes because they are used

as nodes in polynomial interpolation.23 The orders of the Chebyshev functions Tiz ,n+1(x) are

set as (nk, nxh
, nxl

, nη) = (4, 2, 2, 2), and 8 nodes each are used to evaluate the Chebyshev

functions, yielding a total of 4096 nodes

Next, define the functions

κl(xl,t) =
(
Exl,t

Φ(X
(l)
t+1) exp((1− γ)gAl,t+1)

)1−α

=

(∫
∞

∞

∫
∞

∞

Φ(X
(l)
t+1) exp((1− γ)gAl,t+1)dF (εl,t+1)

)1−α

(B.2)

and

κh(xh,t) =
(
Exl,t

Φ(X
(h)
t+1) exp((1− γ)gAh,t+1)

)1−α

=

(∫
∞

∞

∫
∞

∞

Φ(X
(h)
t+1) exp((1− γ)gAh,t+1)dF (εh,t+1)

)1−α

(B.3)

Notice that the indirect value function can be expressed as

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ît

{
(k̂a

t − ît)
1−γ

1− γ
+
[
ηtEx̂l,t

κl(xl,t) + (1− ηt)Ex̂h,t
κh(xh,t)

] 1
1−α

}
.

To be able to evaluate the value function, we also need to approximate the integrals that

appear in this expression using numerical integration procedures.

23This approach is followed by Ju and Miao (2012) and Jahan-Parvar and Liu (2012) in their asset pricing
applications with Markov switching processes.
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• Gauss-Hermite quadrature: In the case of uni-dimensional integrals (as in the outer in-

tegral involved in the computation of expectations such as (B.4)), a Gauss Hermitian

quadrature approach. Specifically, consider the expectations of the form Ex̂k,t
[Kk(xk,t)], k =

l, h. Since xk,t is distributed as normal with mean x̂k,t and variance Ωk, we apply a change

of variables zk,t = (xk,t − x̂k,t)/
√
2Ωk to write the Guass-Hermite quadrature rule as

Ex̂k,t
[κk(xk,t)] = π−1/2

∫
∞

−∞

κk(
√

2Ωk(zl,t + x̂k,t))dF (xk,t),

≈ π−1/2
n∑

i=1

ωiκk(
√
2Ωk(zk,t + x̂k,t))

where ωi = 2n+1n!
√
π[Hn+1(xi)]

−2 and Hn+1 is the Hermite polynomial of order n.

• The monomial approach: In the case, of multi-dimensional integrals such as (B.2) or

(B.3), Collard et al. (2016) use a monomial approach; see Judd (1998), p. 271-276) with

5 degree rule for an integrand on an unbounded range weighted by the standard normal.

Specifically, we approximate the multi-dimensional integral

∫
∞

∞

∫
∞

∞

Φ(X
(k)
t+1) exp((1− γ)gAk,t+1))dF (εk,t+1)

by a 5 degree rule using 2d+ 1 points with d = 2 as

a0Φ(0) + a1

d∑

i=1

(Φ(rei) + Φ(−rei)) + a2

d−1∑

i=1

d∑

j=1

(
Φ(±sei +±sej)

)
, (B.4)

where ei denotes the ith column vector of the identity matrix of order d = 2, and

r =

√
1 +

1

2
d, s =

√
1

2
+

d

4
, v = πd/2,

a0 =
2

d+ 2
v, a1 =

4− d

2(d+ 2)2
, a2 =

v

(d+ 2)2
.

Suppose we obtain an approximation to the indirect value function at the τ ’th iteration

using these steps. This will be based on the Chebyshev coefficients at the τ ’th stage of the
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algorithm, cτ . Denote the approximation obtained by using these coefficients by Ĵ (τ)(Xt). Also

define the vector of future state variables by X
(k)
t+1 = (k̂

(k)
t+1, x̂

(k)
h,t+1, x̂

(k)
l,t+1, η

(l)
t+1), k = l, h. The

value function and optimal investment policy functions, Ĵ∗(Xt) and î∗t = g(Xt), are obtained

as the solution to

Ĵ∗(Xt) = max
ît

{
((k̂a

t n
1−a
t − ît)

νn1−ν
t )1−γ

1− γ
+ β

[
ηtEx̂l,t

(
Exl,t

J (τ)(X
(l)
t+1) exp(ν(1− γ)gAl,t+1)

)1−α

+(1− ηt)Ex̂h,t

(
Exh,t

J (τ)(X
(h)
t+1) exp(ν(1− γ)gAh,t+1)

)1−α
] 1

1−α

}
.

subject to

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

ît ≥ 0.

Now, at the end of the τ ’th iteration, the new value function Ĵ∗(Xt) is used to update the

coefficients of the Chebyshev polynomials, and to obtain Ĵ (τ+1)(Xt) as we describe below.

Denote by cτ , cτ+1 as the set of coefficients entering (B.1) at the τ ’th and τ + 1’th stages,

respectively. We determine the set of coefficients, cτ+1 at the τ + 1’th stage, using a minimum

weighted residual method. Recall that the indirect value function depends on the coefficients

from the τ ’th stage as J∗(Xt; c
τ ) while the new approximation for the indirect value function

depends on cτ+1. The residual function associated with the new set of Chebyshev coefficients

is given by R(Xt; c
τ+1), where

R(Xt; c
τ+1) = Φ(Xt; c

τ+1)− Ĵ∗(Xt; c
τ ).

This involves solving the problem

min
c

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

(Φ(Xt; c
τ+1)− Ĵ∗(Xt; c

τ ))2ω(Xt)dXt, ,

where ω(X) is a multi-dimensional weighting function. The first-order conditions for this prob-
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lem with respect to elements of ciz , iz ∈ Υ are

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

(Φ(Xt; c
τ+1)−Ĵ∗(Xt; c

τ ))Tik(k̂t)Til(x̂l,t)Tih(x̂h,t)Tiη(ηt)ω(Xt)dXt = 0. (B.5)

If we assume that the weighting function is the product of the weights for z ∈ {k, l, h, η} defined

as

ωiz(yz) =
Tiz(yz)√
1− y2z

, iz = 1, . . . , nz, iz ∈ Υ,

where y ∈ {k̂, x̂l, x̂h, η}), the integral in the orthogonality conditions can be solved using Gauss-

Chebyshev quadrature. For integrals of this form, the quadrature nodes and the (constant)

quadrature weights are given by

yjz = cos

(
2jz − 1

2nz

π

)
and ωjz = π/nz, jz = 1, . . . , mz.

Hence, the integral in (B.5) is written as

∑

jk,ji,jh,jη

R(yjk , yjl, yjh, yjη ; c
τ+1)Tik(yjkTil(yjl)Tih(yjh)Tiη(yjη) = 0 (B.6)

for iz = 1, . . . , nz, z ∈ {k, l, h, η}, iz ∈ Υ. Define the product of the Chebyshev polynomials for

z ∈ {k, l, h, η} evaluated at the Chebyshev nodes (yjk , yjl, yjh, yjη) as

Ti(yj) ≡ Ti,k(yjk)Ti,l(yjl)Ti,h(yjh)Ti,η(yjη),

and define J as the updated solution of the Bellman equation in (B.5) as

J (cτ ) =




Ĵ∗(y1k , y1l, y1h, y1η ; c
τ)

...

Ĵ∗(ymk
, yml

, ymh
, ymη

; cτ).


 .
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We will write these conditions in matrix form as

T =




T0(y1) . . .T0(ymz
)

... . . .
...

Tnz
(y1) . . .Tnz

(ymz
)


 .

Using these definitions, we can write the orthogonality conditions in (B.5) in matrix form as

T T ′cτ+1 = T J (cτ ),

which implies a new estimate of the Chebyshev coefficients cτ+1 as a function of the coefficients

cτ as

cτ+1 = (T T ′)
−1 T J (cτ ). (B.7)

B.3 Numerical accuracy of the algorithm

Consider the Bellman equation that the transformed value function satisfies for the power-power

specification of ambiguity averse preferences.

Ĵ(k̂t, µt) =

{
(ĉνt l

1−ν
t )1−γ

1− γ
+ β

[
Eµt

(
Ext

(
Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)

))1−α
] 1

1−α

}
.

Since the value function is assumed to be homogeneous of order ν(1− γ), we can define

j(k̂t, µt) =
[
ν(1 − γ)Ĵ(k̂t, µt)

] 1
ν(1−γ)

.

By definition, j(k̂t, µt) should be on the order of wealth (capital). The value function satisfies

ĵ(k̂t, µt) =



ν(1 − γ)

(
(ĉνt l

1−ν
t )1−γ

1− γ
+ β

[
Eµt

(
Ext

(
Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)

))1−α
] 1

1−α

) 1
ν(1−γ)





≡ RHS.

Now compute the error

ǫ =
[
ĵ(k̂t, µt)− RHS

]
/ct,
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where ǫ is the intertemporal mistake that we make by using the approximation to the value

function expressed in consumption units. This error is evaluated on a grid outside of the original

grid used to calculate the approximation to the value function. Following Judd (1998), we can

report measures such as E1 = log10(max(|ǫ|)) and E2 = log10(mean(|ǫ|)). A value of -4 for

the first indicator means that by using the rule, a consumer would make $1 error out of every

$10,000 spent.

Table B.1: Accuracy of the Numerical Solution

I. Baseline Model II. Panel A II. Panel B
γ α ρ E1 E2 E1 E2 E1 E2

2 5 0.30 -3.8837 -3.9494 -3.9870 -4.0501 -3.9039 -4.0584
2 5 0.85 -3.8817 -3.9453 -3.9904 -4.0536 -3.9825 -4.0595

Note: As in the earlier simulations corresponding to the business cycle moments,
the decision rules under each parameter configuration are computed on the as-
sumption that agents do not observe the persistence parameter, ρk, governing the
temporary component of the TFP process while accuracy measures are computed
for simulations based on draws from the TFP process for a given persistence pa-
rameter, ρk.

Table B.1 shows the values of ǫ for the different parameterizations considered in this study.

The approximation error for the specifications with α > γ > 1 all perform reasonably well, and

they are similar to the values reported by Collard et al. (2016) for their unknown persistence

case.

C Bayesian estimation of the TFP processes

Given the underlying model described in the text, we assume that the agent cannot infer on

the true data generating process (DGP) but she assumes that it can be either a model with low

persistence or a high persistence. Since identification is the major challenge and plays a central

role in our model and in agents’ behavior, we use simulation-based Bayesian inference with

noninformative priors to estimate the model parameters. Specifically, we use Gibbs sampling

together with data augmentation (see Geman and Geman, 1984; Tanner and Wong, 1987) to

obtain posterior results. Since the model is a special case of the unobserved components model
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with Gaussian distributions, we use the Kalman filter together with a simulation smoother.

For the simulation smoother, we use the smoother proposed in Carter and Kohn (1994) and

Frühwirth-Schnatter (1994). The resulting simulation scheme at the mth step is as follows.

1. Sample ρ from p(ρ|x(m−1)
0:T , σ2

y , σ
2
x, ḡ).

2. Sample σ2
y from p(ρ|x(m−1)

0:T , ρ, σ2
x, ḡ).

3. Sample σ2
x from p(ρ|x(m−1)

0:T , ρ, σ2
y , ḡ).

4. Sample ḡ from p(ρ|x(m−1)
0:T , ρ, σ2

x, σ
2
y , ḡ).

5. Sample x
(m−1)
0:T , from p(x0:T |ρ, σ2

y , σ
2
x, ḡ) using Kalman filter and a simulation smoother.

While using noninformative priors reduces the posterior results to be identical with a pure

likelihood based inference, it also provides us the entire distribution of the model parameters.

Examining the distribution of, most notably, the persistence parameter is an integral part of

the approach followed in this paper in the sense that it provides a rational for agent’s ignorance

regarding the persistence of the TFP growth process. The unrestricted model estimates are

displayed in Table C.2 and the distributions of the parameters are displayed in Figure C.1.

To evaluate the model, we use both the maximum likelihood and marginal likelihood values.

Marginal likelihood can be computed as

p(y1:T |M) =

∫

θ

p(y1:T |θ)p(θ)dθ (C.1)

where θ = (ρ, σ2
y , σ

2
x, ḡ). As the marginal likelihood is computed by integrating out the (prior)

parameter distributions, it provides a robust way of computing a performance measure of the

model. To compute the integral we use the modified harmonic mean estimator of Geweke

(1999).

54



Table C.2: Posterior results for the model using
the TFP-util data for the period 1947-2:1977:4

ḡ 0.468 (0.083) σx 0.147 (0.231)
σg 0.902 (0.161) ρ 0.243 (0.187)
Maximum likelihood -167.40
Marginal likelihood -170.06

Note: The results show the posterior means and
posterior standard deviations (in parenthesis) of the
model parameters of the state space described by
equation (3.1) in the text. The inference carried
out 60,000 draws where the first 10,000 are used as
the burn-in sample. We kept every 5th draw, which
yields a sample of 10,000 draws from the ergodic dis-
tribution.

Figure C.1: Distribution of parameters in the unrestricted model using TFP-util.
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From Figure C.2 and C.3 which show the distributions for the estimated processes with

ρ = 0.30 and ρ = 0.85 in Table 2 in the text, we see that imposing a high persistence smooths the

short-tun TFP process as expected, while we observe more erratic changes when we impose low

persistence. However, both process achieve a very similar maximum likelihoods and marginal

likelihood values indicating the agent’s ignorance about the true underlying DGP governing the

TFP growth process.
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Figure C.2: Distribution of parameters in the unrestricted model using TFP-util with ρ = 0.30
for the sample 1947-2:1977-4.
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Figure C.3: Distribution of parameters in the unrestricted model using TFP-util with ρ = 0.85.
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C.1 Informative priors

To have a more refined view of the impact of information and learning, we also generate esti-

mates of the TFP process using more informative priors. We may view more informative prior

distributions as a measure of the agent’s “confidence” regarding the nature of the underlying

TFP process. The priors for variances are set as almost degrees of freedom (dof) observations

each with variance Scale/dof. The results of the estimation are described in Table C.3. The

results in Panel A through Panel F of this table are generated by assuming progressively more

informative priors compared to the uninformative prior case underlying the results in Table 4

in the text.
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Table C.3: Posterior results for the model using TFP-util for different values of ρ
using the sample of 1947-2 : 1977-4.

Prior Posterior
ρ 0.300 0.850

PANEL A
ḡ – 0.466 (0.083) 0.466 (0.084)
σg IG(dof:2 1

16 , Scale: dof∗0.01) 0.925 (0.072) 0.940 (0.062)
σx IG(dof:2 1

16 , Scale: dof∗0.01) 0.159 (0.109) 0.100 (0.037)
Maximum Likelihood -167.40 -167.52
Marginal Likelihood -170.08 -170.55

PANEL B
ḡ – 0.466 (0.083) 0.466 (0.081)
σg IG(dof:2 1

16 , Scale: dof∗0.03) 0.905 (0.081) 0.936 (0.062)
σx IG(dof:2 1

16 , Scale: dof∗0.03) 0.237 (0.127) 0.139 (0.037)
Maximum Likelihood -167.41 -167.71
Marginal Likelihood -170.23 -171.39

PANEL C
ḡ – 0.466 (0.078) 0.466 (0.084)
σg IG(dof:2 1

16 , Scale: dof∗0.05) 0.891 (0.089) 0.933 (0.063)
σx IG(dof:2 1

16 , Scale: dof∗0.05) 0.282 (0.135) 0.162 (0.044)

Maximum Likelihood -167.42 -167.86
Marginal Likelihood -170.34 -172.02

PANEL D
ḡ – 0.466 (0.078) 0.466 (0.083)
σg IG(dof:2 1

16 , Scale: dof∗0.10) 0.867 (0.098) 0.928 (0.064)
σx IG(dof:2 1

16 , Scale: dof∗0.10) 0.349 (0.139) 0.201 (0.049)
Maximum Likelihood -167.43 -168.16
Marginal Likelihood -170.50 -173.10

PANEL E
ḡ – 0.467 (0.074) 0.466 (0.082)
σg IG(dof:2 1

16 , Scale: dof∗0.30) 0.819 (0.105) 0.915 (0.067)
σx IG(dof:2 1

16 , Scale: dof∗0.30) 0.467 (0.134) 0.283 (0.057)
Maximum Likelihood -167.51 -169.08
Marginal Likelihood -170.67 -175.54

PANEL F
ḡ – 0.467 (0.072) 0.466 (0.082)
σg IG(dof:2 1

16 , Scale: dof∗0.50) 0.796 (0.105) 0.907 (0.068)
σx IG(dof:2 1

16 , Scale: dof∗0.50) 0.522 (0.126) 0.333 (0.061)
Maximum Likelihood -167.56 -169.79
Marginal Likelihood -170.78 -177.06

Note: The results show the posterior means and posterior standard deviations (in parenthesis)
of the model parameters in the state space model displayed by equation (3.1) in the text. The
inference is carried out 60,000 draws where the first 10,000 are used as burn-in sample. We kept
every 5th draw, which yields a sample of 10,000 draws from the ergodic distribution.
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Figure C.4: Evolution of the agent’s beliefs for the low persistence model to be the true DGP
over the sample 1978-1:2015-4.
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C.2 Industry estimates

In this section we present posterior results for 9 representative industries based on the data set

from Bloom et al. (2012). The data are from the replication file (stata data file) of the Bloom

et al. (2012) paper. The data span 1971-2009 with annual frequency, and the estimates are

based on TFP data expressed in percent. Hence, the parameters (except the ρ’s) are divided

by 100×4 in the computation of the agent’s decision rule at the quarterly frequency. Below are

the results for selected 4-digit SIC industries from group 24, 28, 29, 30, 33, 34, 35, 36, and 37.

Our calculations are limited by the existence of sectoral data for which there exist significant

missing observations throughout the entire sample period. Specifically, we dropped industries

with more than 5 missing observations. We estimated TFP processes for 3 industries from each

of these sectors but due to space limitations, we only report results for one industry from each

group.
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Table C.4: Posterior results for the model using data on sectoral TFP for selected industries using the
sample of 1947-2:1977-4

2421 2869 2911
Sawmills and Planing Industrial Organic Petroleum Mining

Mills, General Chemicals
0.30 0.85 0.30 0.85 0.30 0.85

ḡ 0.718 (0.083) 0.719 (0.098) 0.5171 (0.0862) 0.5171 (0.0963) -0.449 (0.095) -0.449 (0.099)
σg 1.767 (1.233) 2.978 (0.503) 1.589 (0.864) 2.273 (0.328) 4.830 (1.826) 5.667 (0.717)
σx 2.252 (1.179) 0.976 (0.623) 1.346 (0.888) 0.513 (0.379) 2.033 (2.066) 0.808 (0.694)
Max. -98.35 -98.74 -83.93 -84.08 -123.24 -123.24
Mar. -100.12 -101.64 -85.46 -86.36 -125.16 -125.22

3084 3315 3448
Plastic Pipes Steel Wiredrawing and Prefabricated Metal Buildings

Steel Nails and Spikes and Components
0.30 0.85 0.30 0.85 0.30 0.85

ḡ -0.100 (0.100) -0.100 (0.100) -0.495 (0.079) -0.494 (0.096) 0.5469 (0.0872) 0.5451 (0.0987)
σg 6.140 (0.899) 6.292 (0.761) 2.028 (1.916) 4.141 (1.558) 2.9253 (2.0054) 4.8793 (0.7413)
σx 1.130 (1.254) 0.692 (0.587) 3.805 (1.753) 1.851 (1.749) 3.0347 (1.9725) 0.8328 (0.8480)
Max. -123.35 -123.36 -116.87 -118.45 -111.42 -111.67
Mar. -125.08 -126.00 -118.71 -120.77 -112.80 -114.17

3519 3621 3731
Internal combustion Motors and generators Ship building

engines and repairing
0.30 0.85 0.30 0.85 0.30 0.85

ḡ -0.536 (0.093) -0.536 (0.100) -0.259 (0.090) -0.259 (0.099) 0.1422 (0.0987) 0.1421 (0.0989)
σg 3.919 (1.841) 5.148 (0.662) 2.680 (1.489) 3.907 (0.580) 5.1789 (0.8666) 5.3449 (0.6645)
σx 2.351 (1.991) 0.730 (0.705) 2.201 (1.555) 0.714 (0.702) 0.9997 (1.1156) 0.6303 (0.5186)
Max. -119.14 -119.15 -108.93 -109.09 -113.97 -113.97
Mar. -120.91 -121.93 -110.56 -112.48 -115.80 -116.16

Note: The results show the posterior means and posterior standard deviations (in parenthesis) of the model parameters
the state space described by equation (3.1) in the text (evaluated in percentage terms). The inference was carried out
with 60,000 draws where the first 10,000 are used as burn-in sample. We kept every 5th draw, which yields a sample of
10,000 draws from the ergodic distribution.

We also calculated estimates for 6 industries with some of the largest uncertainty measures

on TFP calculated according to the measure in Bloom et al. (2012). These are (in descending

order) 2075, 2911, 3571, 2022, 2048, 2879, 2874. We could not get the decision rules to converge

under the estimates for Industry 2874, which has very high variances for the shocks ǫAk,t and

ǫxk,t for k = l, h. We already have the results for Industry 2911 in Table C.4. In Table C.5,

we display the results for 3 of the remaining industries, 3571, 2075 and 2879. Finally, we also
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estimate the model with industry 3221 in Table C.6 as the industry with the lowest degree of

uncertainty on TFP.

Table C.5: Posterior results for the model using sectoral TFP data for high uncertainty indices using
the sample of 1947-2:1977-4

3571 2075 2879
Soybean oil mills Electronic computers Pesticides and agricultural

chemicals, not elsewhere classified
0.30 0.85 0.30 0.85 0.30 0.85

ḡ 17.255 (0.095) 17.256 (0.100) 1.702 (0.100) 1.702 (0.100) -0.234 (0.086) -0.234 (0.100)
σg 7.420 (3.560) 9.412 (1.341) 11.408 (1.461) 11.637 (1.399) 4.641 (4.288) 10.025 (1.810)
σx 4.528 (3.908) 1.946 (1.562 1.516 (1.808) 0.946 (0.862) 7.341 (4.021) 2.035 (2.378)
Max. -140.68 -140.39 -146.16 -146.16 -141.81 -142.99
Mar. -142.44 -142.76 -148.17 -148.17 -143.49 -145.57

Note: The results show the posterior means and posterior standard deviations (in parenthesis) of the model parameters
the state space described by equation (3.1) in the text (evaluated in percentage terms). The inference was carried out
with 60,000 draws where the first 10,000 are used as burn-in sample. We kept every 5th draw, which yields a sample
of 10,000 draws from the ergodic distribution.

Table C.6: Posterior results for the model using sectoral TFP data
for high uncertainty indices using the sample of 1947-2:1977-4

3221
Glass containers

0.30 0.85 0.30 0.85 0.30 0.85
ḡ 0.042 (0.095) 0.042 (0.098)
σg 2.489 (0.697) 2.763 (0.356
σx 1.011 (0.872) 0.489 (0.356)
Max. -93.10 -93.09
Mar. -95.09 -95.56

Note: The results show the posterior means and posterior standard devia-
tions (in parenthesis) of the model parameters of the state space described
by equation (3.1) in the text (evaluated in percentage terms). The infer-
ence was carried out with 60,000 draws where the first 10,000 are used as
burn-in sample. We kept every 5th draw, which yields a sample of 10,000
draws from the ergodic distribution.
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D A log-linear approximation

In Tallarini (2000) and Backus et al. (2014), the impact of uncertainty aversion and ambiguity

aversion is examined in the context of recursive preferences that admit a separation between

intertemporal substitution and risk aversion or equivalently, among intertemporal substitution,

risk aversion, and ambiguity aversion. These papers derive log-linear decision rules for capital

and consumption, and show that the parameter of risk aversion (ambiguity aversion) does not

directly affect the coefficient on the current capital stock in the log-linear decision rules for the

capital stock and consumption. Thus, they show that the parameter of risk aversion (ambiguity

aversion) plays no role in the endogenous dynamics of the capital stock.

Here we show this result in the one-process model considered in the text. This may be

viewed as the special case in which beliefs converge to a given process such that ηt = 1 (or

equivalently, ηt = 0). We also omit the labor-leisure choice because it does not add to the

substantive analysis. The social planner’s problem in this environment is expressed as

Ĵ(k̂t, x̂t) = max
ĉt ,̂it

{
ĉt

1−γ

1− γ
+ β

[
Ex̂t

(
Ext

Ĵ(k̂t+1, x̂t+1) exp((1− γ)gA,t+1)
)1−α

] 1
1−α

}
. (D.1)

subject to the resource constraint and the laws of motion for beliefs as

ĉt + exp(gA,t+1)k̂t+1 ≤ k̂a
t + (1− δ)k̂t ≡ f(kt),

x̂t+1 = ρx̂t +Kνt+1,

νt+1 = gA,t+1 − ḡ − ρx̂t = ρ(xt − x̂t) + σxǫx,t+1 + σAǫA,t+1.

where K = ρΩf−1, f = Ω + σ2
A, Ω = ρ2Ω − ρ2Ω2f−1 + σ2

x, such that f = E[(gA,t+1 −
E(gA,t+1))

2|gA,1, . . . , gA,t] and Ω = E[(xt+1 − x̂t+1)
2|gA,1, . . . , gA,t], k = l, h.

The state variables of the model are defined as (k̂t, x̂t). As before, the approach to generating

log-linear solutions is to approximate the equilibrium relations around the mean log of the steady

values. Substituting for the resource constraint into the logarithm of the indirect value function
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to obtain

log Ĵ(k̂t, x̂t) = max
ĉt

log

{
ĉt

1−γ

1− γ
+ β

[
Ex̂t

(
Ext

Ĵ(k̂t+1, x̂t+1) exp((1− γ)gA,t+1)
)1−α

] 1
1−α

}
.

Define

Φt =

[
Ex̂t

(
Ext

Ĵ(k̂t+1, x̂t+1) exp((1− γ)gAt+1)
)1−α

]
,

and

Ψt =

{
Ex̂t

[(
Ext

Ĵ(k̂t+1, x̂t+1) exp((1− γ)gAt+1)
)
−α

Ext
Ĵk(k̂1, x̂t+1) exp(−γgAt+1)

]}

The first-order condition with respect to ĉt is

0 = ĉ−γ
t − βΦ

α
1−α

t Ψt, (D.2)

where we have omitted the multiplication of the entire right-side term by 1/Jt. The envelope

condition is given by

Ĵkt = βΦ
α

1−α

t Ψtfkt, (D.3)

where again we have cancelled the terms 1/Jt on both sides of the equation and fkt is the

marginal product of current capital..

From these two equations, we infer that

ĉ−γ
t = Jkt/fkt. (D.4)

This equation can be used to derive the decision for the consumption allocation. Evidently, it

only depends on the derivative of the value function Jkt, as in the additive models discussed by

Backus et al. (2014).

D.1 Solving for the log-linear decision rules

As in Backus et al. (2014), we assume that the value function itself can be approximated as

log(Ĵt) = d(pk log(k̂t) + pxx̂t), (D.5)
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where d = (J − p0)/J and qx is negative. 24 From this expression, we can evaluate Jkt as

log Ĵk(k̂t, x̂t) = [pk − 1] log(k̂t) + pxx̂t] = qk log(k̂t) + qxx̂t,

and we use the approximation

log(fk(kt)) =
fkk
fk

elog(k)(log(kt)− log(k))

=
fkkk

fk
log(kt) + constants

= λr log(kt) + constants.

Putting these two results yields

log(ĉt) = −γ−1
(
qk log(k̂t) + qxx̂t

)
+ γ−1λr log(k̂t)

= −γ−1(qk − λr) log(k̂t)− γ−1qxx̂t

= hc0 + hck log(k̂t) + hc,xx̂t

We can also derive the controlled law of motion for the capital stock as before using the log-

linearized resource constraint and the log-linear decision rule for consumption as

log(k̂t+1) = λk log(k̂t)− λc log(ĉt)− gA,t+1

= λk log(k̂t) + λcγ(qk − λr) log(k̂t) + λcγ
−1 (qxx̂t)− xt+1 − σAǫA,t+1

= [λk + λcγ
−1(qk − λr)] log(k̂t) + λcγ

−1qxx̂t − xt+1 − σAǫA,t+1

= hk0 + hkk log(k̂t) + hk,xx̂t − gA,t+1.

24These authors derive this representation by initially assuming that the derivative of the value function is
approximated log-linearly as

log(Jkt) = p1 + log(pk)(pk − 1) log(kt) + pTx xt + pvvt ⇒ Jkt = kpk−1
t exp(p1 + pTXxt + pvvt).

Integrating with respect to kt yields

Jt = p0 + kpk

t exp(p1 + pTXxt + pvvt).

This is not log-linear unless p0 = 0. However, a log-linear approximation yields the representation in the text.
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This representation is very similar to the one derived from the recursive non-expected utility

model in Backus et al. (2014). For deterministic consumption paths, the smooth ambiguity

model implies that γ−1 is the intertemporal elasticity of substitution in consumption, which

affects the decision rule for the optimal capital stock directly..

To complete the solution, we seek equations to determine qk and qx. To find them, we need

to evaluate the right-side of the envelope condition as before. Notice that

log(Ĵkt) = log(β) +
α

1− α
log(Φt) + log(fkt) + log(Ψt).

Using the results we have derived so far, we can evaluate the the terms on the right-side of

the above equation as

α

1− α
log(Φt) + log(Ψt) =

α

1− α
log

(
Ex̂t

[
Ext

(
Ĵt+1 exp((1− γ)gAt+1)

)1−α
])

+ log

(
Ex̂t

[
Ext

(
Ĵt+1 exp((1− γ)gAt+1)

)
−α

Ext
Ĵk,t+1 exp(−γgAt+1)

])
.

To simplify notation, let Et = Ex̂t
Ext

. To calculate this explicitly, we make use of the following

result as

α

1− α
logEx̂t

[
Ext

(
Ĵt+1 exp((1− γ)gAt+1)

)1−α
]
=

αEt

[(
log(Ĵt+1) + (1− γ)gA,t+1

)]
+ variance terms25.

Likewise,

logEx̂t

{[
Ext

(
Ĵt+1 exp((1− γ)gAt+1)

)
−α
]
Ext

[
Ĵk,t+1 exp(−γgA,t+1)

]}
=

−αEt

[
log(Ĵt+1) + (1− γ)gA,t+1

]
+ Et

[
log(Ĵk,t+1)− γgA,t+1

]
+ variance terms.26

25The variance terms are (α(1 − α)/2)V art log(Ĵt+1) + (α(1 − α)(1 − γ)2/2)V art(gA,t+1).
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Hence,

α

1− α
log(Φt) + log(Ψt) = αEt

[
log(Ĵt+1 + (1− γ)gAt+1))

]

−αEt

[
log(Ĵt+1 + (1− γ)gAt+1)

]
+ Et

[
log(Ĵk,t+1)− γgAt+1

]
+ variance terms,

so that the impact of the ambiguity aversion parameter α cancels out completely, and does not

affect the dynamics of the capital stock.

Thus, the coefficients of the capital stock rule are determined from the simplified envelope

condition as

log(Ĵk,t) = Et

[
(log(Ĵk,t+1)− γgAt+1)

]
+ log(fk) + variance terms,

which can be re-written as

qk log(k̂t) + qxx̂t = logEt

[
(qk log(k̂t+1) + qxx̂t+1)− γgA,t+1

]
+ λr log(k̂t)

= logEt

[
qk(hkk log(k̂t) + hk,xx̂t) + qxx̂t+1 − γgA,t+1

]
+ λr log(k̂t)

= logEt

{
qk(hkk log(k̂t) + hk,xx̂t) + qxρx̂t + qxK[ρ(xt − x̂t) + σxǫx,t+1 + σAǫA,t+1]

−γ(ḡ + ρxt + σxǫx,t+1 + σAǫA,t+1)}+ λr log(k̂t)

= (qkhkk + λr) log(k̂t) + (qkhk,x + qxρ− γρ)x̂t + q2xK
2ρ2

Ω

2
+
[
q2xK

2 + γ2
] σ2

x + σ2
A

2

Thus,

qk = qkhkk + λr = qk[λk + λcγ
−1(qk − λr)], (D.6)

which is independent of the ambiguity aversion parameter α. Given qk, we can solve for qx from

the envelope condition provided above as

qx = qkhk,x + qxρ− γρ = qkλcγ
−1qx + qxρ− γρ. (D.7)

26The variance terms in this case are (α2/2)V art log(Ĵt+1)+ (α2(1− γ)2/2)V art(gA,t+1)+V art log(Ĵk,t+1)+
(γ2/2)V art(gA,t+1).
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Notice that if ρ = 0 so that the unobserved component xt+1 has no persistence, then qx = 0.

We can write the coefficients on the capital stock in the log-linear representation for the

future capital stock and consumption as

hk,k = [λk + λcγ
−1(qk − λr)]

hc,k = −γ−1(qk − λr).

As in Backus et al. (2014), the ambiguity aversion parameter does not affect the endogenous

dynamics of the capital stock. Instead, it affects the decision rule for the optimal capital

stock only through the constant variance terms. A similar result is derived by Tallarini (2000).

Furthermore, a separation property also holds in that the coefficient of the capital stock – hkk –

is also independent of agents’ beliefs about the underlying unobserved state, x̂t. Likewise, the

dynamics induced by agents’ beliefs about the transitory component of productivity growth –

hk,x and hc,x – are also independent of the ambiguity aversion parameter, α.
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Table 4: Simulation Results: Ambiguity about the Persistence/Variability of the Unobserved Component of
TFP Growth

γ = 0.5, α = 0.8 γ = 0.5, α = 5 γ = 2, α = 5
Simulations conditional on ρk = 0.85

Standard deviations
y c i h p y c i h p y c i h p

1.322 0.594 6.013 0.656 0.775 1.328 0.598 6.038 0.659 0.779 1.052 0.689 3.092 0.262 0.806
Correlations

y c i h p y c i h p y c i h p
y 1.000 0.728 0.942 0.909 0.936 1.000 0.728 0.942 0.909 0.936 1.000 0.985 0.979 0.954 0.995
c 1.000 0.460 0.377 0.923 1.000 0.459 0.376 0.923 1.000 0.930 0.890 0.997
i 1.000 0.994 0.765 1.000 0.994 0.765 1.000 0.995 0.954
h 1.000 0.705 1.000 0.704 1.000 0.921
p 1.000 1.000 1.000
i/y 0.1694 0.1701 0.1576

Simulations conditional on ρk = 0.30
Standard deviations

y c i h p y c i h p y c i h p
1.307 0.583 5.957 0.650 0.763 1.304 0.583 5.949 0.649 0.762 1.034 0.676 3.042 0.258 0.791

Correlations
y c i h p y c i h p

y 1.000 0.728 0.943 0.911 0.936 1.000 0.727 0.943 0.911 0.936 1.000 0.986 0.979 0.955 0.995
c 1.000 0.463 0.381 0.922 1.000 0.461 0.379 0.922 1.000 0.931 0.891 0.997
i 1.000 0.994 0.768 1.000 0.994 0.767 1.000 0.995 0.955
h 1.000 0.709 1.000 0.707 1.000 0.922
p 1.000 1.000 1.000
i/y 0.1722 0.1756 0.1600

Note: The model is simulated based on the decision rules for the main model with ambiguity where the agent cannot distinguish
perfectly between two processes with persistence ρl = 0.30 and ρh = 0.85. The parameters characterizing the shock processes
are derived from the estimates in Table 2 and assume that ḡh = 0.00469 and ρh = 0.85, σAh

= 0.00952, σxh
= 0.0004 for the

high persistence process and ρl = 0.30, σAl
= 0.00946, σxl

= 0.00044 for the low persistence process.
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Table 5: Simulation Results: Known Persistence/Variability of the Unob-
served Component of TFP Growth

Single process with ρ = 0.85
γ = 0.5, α = 0.8 γ = 2, α = 5

Standard deviations
y c i h p y c i h p

1.162 0.639 3.272 0.437 0.754 0.946 0.822 1.532 0.113 0.835
Correlations

y c i h p y c i h p
y 1.000 0.968 0.981 0.958 0.986 1.000 0.999 0.998 0.985 0.999
c 0.904 0.857 0.996 1.000 0.996 0.980 1.000
i 1.000 0.994 0.937 1.000 0.994 0.996
h 1.000 0.898 1.000 0.981
p 1.000 1.000
i/y 0.2087 0.1774

Single process with ρ = 0.30
γ = 2, α = 5 γ = 0.5, α = 0.8

Standard deviations
y c i h p y c i h p

1.154 0.639 3.263 0.436 0.748 0.927 0.807 1.552 0.134 0.819
Correlations

y c i h p y c i h p
1.000 0.969 0.981 0.958 0.986 1.000 0.995 0.972 0.834 0.996

1.000 0.904 0.857 0.996 1.000 0.945 0.777 1.000
1.000 0.994 0.937 1.000 0.940 0.947

1.000 0.898 1.000 0.781
1.000 1.000

i/y 0.2100 0.1767

Note: The model is simulated based on the decision rules for the model where the
agent know with certainty the persistence of the unobserved component of TFP
growth, namely, xk,t for k = 1, 2. The parameters characterizing the shock pro-
cesses are derived from the estimates in Table 2 and assume that ḡh = 0.00469
and ρh = 0.85, σAh

= 0.00952, σxh
= 0.0004 for the high persistence process and

ρl = 0.30, σAl
= 0.00946, σxl

= 0.00044 for the low persistence process.
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Table 6: Simulation Results: Informative Priors about the Persistence/Variability of the Unobserved Component of TFP

Panel A Panel B
Simulations conditional on ρk = 0.85

γ = 0.5, α = 0.8 γ = 2, α = 5 γ = 0.5, α = 0.8 γ = 2, α = 5
Standard deviations

y c i h p y c i h p y c i h p y c i h
1.330 0.622 5.779 0.620 0.808 1.048 0.734 2.778 0.221 0.836 1.324 0.649 5.365 0.560 0.841 1.044 0.788 2.463 0.183 0.870

Correlations
y c i h p y c i h p y c i h p y c i h

y 1.000 0.784 0.943 0.909 0.948 1.000 0.993 0.985 0.967 0.998 1.000 0.854 0.950 0.917 0.964 1.000 0.995 0.985 0.961 0.998
c 1.000 0.537 0.455 0.941 1.000 0.959 0.930 0.999 1.000 0.652 0.577 0.962 1.000 0.964 0.930 0.999
i 1.000 0.994 0.789 1.000 0.995 0.972 1.000 0.994 0.833 1.000 0.993 0.974
h 1.000 0.947 1.000 0.729 1.000 0.777 1.000 0.943
p 1.000 1.000 1.000 1.000
i/y 0.1682 0.1582 0.1645 0.1580

Simulations conditional on ρk = 0.30
γ = 0.5, α = 0.8 γ = 2, α = 5 γ = 0.5, α = 0.8 γ = 2, α = 5

Standard deviations
y c i h p y c i h p y c i h p y c i h

1.283 0.579 5.696 0.616 0.762 1.015 0.687 2.824 0.232 0.794 1.280 0.584 5.565 0.598 0.770 1.023 0.698 2.823 0.230 0.804
Correlations

y c i h p y c i h p
y 1.000 0.765 0.946 0.914 0.945 1.000 0.991 0.984 0.964 0.997 1.000 0.789 0.948 0.916 0.950 1.000 0.990 0.983 0.962 0.997
c 1.000 0.518 0.438 0.934 1.000 0.948 0.915 0.998 1.000 0.557 0.479 0.941 1.000 0.947 0.913 0.998
i 1.000 0.995 0.789 1.000 0.995 0.966 1.000 0.995 0.803 1.000 0.995 0.965
h 1.000 0.731 1.000 0.949 1.000 0.747 1.000 0.937
p 1.000 1.000 1.000 1.000
i/y 0.1694 0.1589 0.1719 0.1618

Note: The model is simulated based on the decision rules for the main model with ambiguity where the agent cannot distinguish perfectly between two processes
persistence ρl = 0.30 and ρh = 0.85. In Panel A, the parameters of the technology shock process are set so that ḡh = 0.00469 and ρh = 0.85, σAh

= 0.0094, σxh
= 0

for the high persistence process and ρl = 0.30, σAl
= 0.00925, σxl

= 0.00159 for the low persistence process. In Panel B, the parameters of the technology shock pro
are set so that ρh = 0.85, σAh

= 0.00936, σxh
= 0.00139 for the high persistence process and ρl = 0.30, σAl

= 0.00905, σxl
= 0.00237 for the low persistence process.
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Table 7: Simulation Results for the Risk-free Rate, Quarterly Rate

Model Industry name Risk-free rate rf X̃ SD(X̃) Uncertainty measure
Baseline model - 1.89 5.77e-05 0.063 -

Panel B - 1.78 5.19e-03 0.25 -

Representative industries

Industry 2421 Sawmills and planing mill, general 1.47 -7.51e-03 0.400 0.4642

Industry 2869 Industrial organic chemicals 1.40 -1.00e-02 0.23 0.5286

Industry 2911 Petroleum mining 1.00 -8.02e-04 0.40 0.6504

Industry 3084 Plastic pipes 1.17 -8.03e-04 0.31 0.4235

Industry 3315 Steel wiredrawing, steel nails 1.12 8.76e-03 0.57 0.3646
and spikes

Industry 3448 Fabricated metal buildings 1.43 -9.49e-04 0.23 0.3948
and components

Industry 3519 Internal combustion engines 1.01 -4.82e-03 0.39 0.4255

Industry 3621 Motors and generators 1.12 1.06e-02 0.34 0.3513

Industry 3731 Ship building and repairing 1.73 1.14e-03 0.28 0.4072

High and Low Uncertainty Industries

Industry 3571 Electronic computers 7.46 2.47e-02 0.88 0.6222

Industry 2075 Soybean oil mills 1.80 3.15e-03 0.42 0.6875

Industry 2879 Pesticides and agricultural
chemicals, not elsewhere classified 1.11 4.40e-03 1.01 0.5824

Industry 3221 Glass containers 1.23 8.703-04 0.23 0.1934

Note: The model is simulated based on the decision rules for the main model with ambiguity where the agent cannot
distinguish perfectly between two processes with persistence ρl = 0.30 and ρh = 0.85. The riskfree interest rate is
simulated for the full sample of 1947:i-2015:IV but the simulated values for the period 1947:I-1978:IV are discarded
as part of the burn-in sample. The distorted means, X̃, and the distorted standard deviations, SD(X̃), are computed
according to formulas in Section 5 and are evaluated in percentage terms, as is the risk-free rate. The uncertainty
measure is taken from Bloom et al. (2012).
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