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Emotion and the Market: A Model of Anticipated Regret, Investor Behavior 

and Market Turbulence 

 

Abstract 

Based on Regret Theory, this paper examines the effects of regret on investor 

behavior and market turbulence in a model where investors not only regret wrong 

actions, but also regret inaction. We demonstrate that regret aversion can cause 

investors to ride a bubble, exit and reenter the market, or choose non-trading. As a 

result, herds and partial herds can occur in the market, and the stronger is regret over 

inaction, the easier it is for herds to occur. The model predicts that order volume and 

order imbalance tend to have positive (negative) correlation when a bubble (crash) is 

forming. 

 

1. Introduction 

Regret is a painful feeling caused by “counterfactual thinking” that compares the 

true outcome of a choice with “what might have been.”1 In financial markets, it is 

natural for investors to have counterfactual thinking because investors can easily 

compare the performance of their portfolios with other assets and calculate “how much 

they might have earned.” For example, Harry Markowitz vividly described how 

anticipated regret affected his choice of a pension plan. “I should have computed the 

historical co-variance of the asset classes and drawn an efficient frontier. Instead, I 

visualized my grief if the stock market went way up and I wasn’t in it – or if it went 

                                                   
1 See Kahneman and Miller (1986), Landman (1987b), Kahneman (1995), Roese (1997) 
and others. 
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way down and I was completely in it. My intention was to minimize my future regret. 

So I split my contributions 50/50 between bonds and equities” (As quoted in Zweig 

(2007), pp 4.).  

Studies of psychology and neuroscience, such as Camille et al. (2004) and Coricelli 

et al. (2005), provide strong evidence that regret can influence decision making.2 

Furthermore, the effects of emotions on decision making are hard to control by rational 

thinking. As neuroscientist J. LeDoux noted, “While conscious control over emotions is 

weak, emotions can flood consciousness. This is so because the wiring of the brain at 

this point in our evolutionary history is such that connections from the emotional 

systems to the cognitive systems are stronger than connections from the cognitive 

systems to the emotional systems” (LeDoux (1996), pp 19.). Thus, not only 

inexperienced investors but also professional investors such as fund managers can be 

affected by regret. Because regret is neither observable nor verifiable, it is difficult to 

contract it away. Arbitrage trading against the distortions caused by regret is difficult 

too, not only because there are limits of arbitrage as noted by Shleifer and Vishny 

(1997) but also because arbitragers themselves are not immune to the influence of 

emotions. A typical case that illustrates the influence of regret on the aggregate market 

may be the formation of a bubble; when the market booms, individuals rush to buy 

overvalued assets because they do not want later regret about missing a bull market. 

Such behaviors fuel the bubble and finally result in market fluctuations at the 

aggregate level.3  

                                                   
2 The next section is a brief review of studies of regret in psychology and neuroscience. 
For detailed reviews, see Gilovich and Medvec (1995), Barbey et al. (2009), and Crespi 
et al. (2012). 
3 See, for example, Nofsinger (2012) for household behaviors in bubbles and crashes. 
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The influence of regret on economic decisions was first mentioned by L. J. Savage 

as a rationale for the “minimax rule” of decision making under uncertainty (Savage 

(1954), pp 163). Regret Theory, a theoretical model of regret and decision making, was 

developed independently by Bell (1982, 1983) and Loomes and Sugden (1982, 1987). 

Until the 1990s, this theory attracted more attention in neuroscience than in 

economics; however, in recent years, the number of studies about regret and economic 

decision making increased quickly. For example, Skiadas (1997) shows that conditional 

utilities including regret can be aggregated to form an unconditional utility; 

Filiz-Ozbay and Ozbay (2007) apply Regret Theory to auctions; Sarver (2008) 

demonstrates that fewer options lead to higher utility for regret-avoidant individuals; 

and Hayashi (2008) and Bikhchandani and Segal (2014) propose alternative 

approaches to model regret. Regret Theory has also been applied to studies of financial 

markets; for example, Fogel and Berry (2006) examine the relationship between regret 

and the disposition effect, Muermann et al. (2006) analyze the effects of regret on 

pension schemes, and Michenaud and Solnik (2008) use regret aversion to explain 

currency-hedging decisions. 

Based on Regret Theory, the present paper constructs a theoretical model that 

aims to illustrate the effects of regret on market fluctuations. The basic structure of the 

model is a sequential trading model that follows Glosten and Milgrom (1985), where 

informed traders and noise traders sequentially trade a risky asset with a market 

maker. However, instead of assuming risk-neutral agents, we assume that an informed 

trader’s utility depends on his conditional expectation of return as well as on his 

                                                                                                                                                           
See also Kindleberger and Aliber (2005) for a description of bubbles in history. 
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anticipated regret, where regret is measured by a “regret function” that compares the 

factual outcome from the chosen option with foregone payoffs from unchosen options.  

A distinctive feature of the model developed by this paper is that it not only 

includes “regret over action”, the regret of a bad investment, but also incorporates 

“regret over inaction”, the regret of a missed opportunity. Psychology studies such as 

Kahneman and Miller (1986) and Gilovich and Medvec (1994) suggest that people 

regret wrong actions more in the short term but tend to have more regrets about 

missed opportunities in the long term. Furthermore, in experimental settings, Büchel 

et al. (2011) illustrate that regret of missed opportunities leads to more risk taking in 

the future, and Steiner and Redish (2014) suggest that the relationship between regret 

of missed opportunities and risking taking may have deep roots in mammals’ nervous 

systems.4 In financial markets, if asset prices keep rising and individuals strongly 

regret missed opportunities, it is quite likely that they will try to correct their mistake 

by investing heavily in already overheated markets and thus cause a bubble to grow 

even larger. Based on this intuition as well as experimental evidence, the present paper 

extends the original Regret Theory by incorporating regret over inaction. In the model, 

a parameter 𝑧 controls the magnitude of regret over inaction. By changing the value of 

𝑧, we illustrate how regret over inaction affects investor behavior and the aggregate 

market. Previous studies on regret and decision making do not distinguish regret over 

inaction from regret over action. To the knowledge of the author, the present paper 

provides the first theoretical model that explicitly illustrates the effects of regret over 

                                                   
4 In the experiment conducted by Steiner and Redish (2014), rats encounter a serial 
sequence of tasks that can create “regret-inducing” situations. The activities of rats’ 
orbitofrontal cortex and ventral stratum suggest that rats regret bad decisions. 
Moreover, when rats are regretting a missed opportunity, they become impatient and 
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inaction on decision making.  

Using this model, we first demonstrate that investors may ride a bubble to avoid 

anticipated regret. In the market, for traders who observe negative signals, the price of 

the asset is higher than the conditional expectation of the asset value; however, if the 

price keeps rising, these traders will choose to buy the overvalued asset to avoid regret. 

The phenomenon where informed traders choose to ride a bubble even after they are 

aware of overpricing has been addressed by influential studies such as De Long et al. 

(1990), Allen et al. (1993), and Abreu and Brunnermeier (2003). In these studies, 

informed traders ride the bubble either because they expect that they can sell the 

overpriced asset at an even higher price to “greater fools”, or because they expect that 

the bubble will not burst soon.5 The present paper proposes an additional explanation: 

informed traders ride, instead of trading against, a bubble because they try to avoid 

anticipated regret. This explanation is appealing in the sense that it is intuitive and 

does not require investors’ to have specific “irrational” beliefs about the market; 

moreover, the structure of the model is much simpler than many rival models.  

Second, we show that regret over inaction plays an important role in the formation 

of bubbles. In the model, investors who noticed the overpricing may temporarily leave 

the market in the early stage of a bubble; however, after the price rises to an even 

higher level, these sideliners will reenter the market to join the buy-herd.6 It is shown 

                                                                                                                                                           
tend to choose risky options in subsequent tasks. 
5 See also Conlon (2004), Doblas-Madrid (2012), and Matsushima (2013). For a survey 
of the literature, see Brunnermeier and Oehmke (2013). 
6  This paper is related to the literature of informational cascades but with an 
important difference: in standard informational cascades models, informed traders do 
not buy overvalued assets or sell undervalued assets; they herd because of 
informational externality. For surveys of studies on informational cascades, see 
Bikhchandani and Sharma (2001) and Hirshleifer and Teoh (2003). 
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that the stronger is investors’ regret over inaction, the easier it is for a bubble to occur. 

This result is in accordance with experimental findings that regret of missed 

opportunities leads to risk-taking in subsequent decision making. It also provides a 

theoretical explanation for the observation that anticipated regret of missed 

opportunities can force otherwise rational persons to join the herd during a bubble.7 By 

analogous arguments, the model in this paper can also explain “fire selling’’ during a 

crash.  

Finally, the model predicts that when the market is moving toward a bubble, order 

volume (the total number of orders from traders) tends to have a positive correlation 

with order imbalance (the ratio between the number of buy orders and the number of 

sell orders). Conversely, if the market is moving toward a crash, order imbalance and 

volume tend to have a negative correlation. The model also suggests that trading 

activity will be lower after a crash, whereas the probability of market turbulence will 

become higher after a long-continued bull market.  

The remainder of the paper is organized as follows. Section 2 reviews the related 

literature in psychology and neuroscience. Section 3 describes the framework of the 

model and derives investors’ trading strategies in a special case. Section 4 analyzes 

investors’ trading strategies in a more general setting. Section 5 examines the effects of 

regret on market fluctuations. Section 6 discusses testable implications of the model. 

Section 7 presents the study’s conclusions.  

 

2. Regret and Regret Theory 

                                                   
7 For example, Kindleberger and Aliber (2005, pp30) describe that a “follow-the-leader 
process” forms in a bubble because “There is nothing as disturbing to one’s well-being 
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In economics, decision making has been treated as a pure cognitive process for 

many years. Nevertheless, a growing number of psychologists, neuroscientists, and 

economists in the emerging field of neuroeconomics started to explore the effects of 

emotions on decision making. 8  For example, Damasio (1994) and Bechara and 

Damasio (2005) proposed a “somatic marker hypothesis,” which states that individuals 

can “feel” and react to risk even before they consciously know about it. Mellers et al. 

(1997, 1999) proposed a “decision affect theory,” which examines the effects of 

counterfactual comparisons and surprisingness on decision making. Loewenstein et al. 

(2001) proposed a “risk-as-feelings hypothesis,” which describes how immediate 

emotions and anticipated emotions affect decision making. For reviews of research on 

emotions and economic decision making, see Cohen (2005), Elster (1998), Loewenstein 

and Lerner (2003), Phelps (2009), and Rick and Loewenstein (2008).  

The present paper focuses on the effects of regret on decision making in financial 

markets. According to psychology studies such as Kahneman and Tversky (1982), 

Kahneman and Miller (1986), Landman (1987b), Landman and Manis (1992), Roese 

(1997), and Roese and Morrison (2009), regret is a painful feeling caused by 

“counterfactual thinking” that compares the true outcome of a choice with “what might 

have been.” Regret can easily be confused with disappointment because 

disappointment also arises from counterfactual thinking. However, they are different 

emotions: regret is felt when the result of the chosen option is worse than the result of 

the foregone option, whereas disappointment is felt when the result of a decision is 

                                                                                                                                                           
and judgment as to see a friend get rich.” 
8 See Camerer et al. (2005), Glimcher at al. (2009), and Innocenti and Sirigu (2012) for 
surveys of neuroeconomics. 
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worse than expectation.9 Moreover, biologically speaking, regret and disappointment 

involve different nervous systems, a fact demonstrated by neuroimaging studies 

carried out in recent years by Coricelli et al. (2005) and others. Regret may also be 

confused with risk because both are related to bad outcomes of decisions. To observe the 

difference, consider the case that an investor invests all his savings on riskless assets; 

this investor has no risk, but he may regret this decision in the future, especially when 

he faces a booming stock market. For reviews of studies on regret in psychology, see 

Landman (1993) and Gilovich and Medvec (1995). 

Regret Theory is a theoretical model of regret and decision making developed 

independently by Bell (1982, 1983) and Loomes and Sugden (1982, 1987). They propose 

the following “modified utility function”:   

𝑢�𝑟𝑖, 𝑟𝑗� = 𝑟𝑖 + 𝑓�𝑟𝑖 − 𝑟𝑗�,                                              (1) 

𝑢�𝑟𝑗, 𝑟𝑖� = 𝑟𝑗 + 𝑓�𝑟𝑗 − 𝑟𝑖�                                              (2) 

where 𝑟𝑖 is the uncertain outcome of asset-𝑖, 𝑟𝑗 is the outcome of asset-𝑗, and 𝑓(∙) is a 

strictly increasing function with 𝑓(0) = 0. For an individual who has chosen asset-𝑖, 

his utility is increasing in 𝑟𝑖, the actual return on asset-𝑖, and is decreasing in 𝑟𝑗, the 

counterfactual return he would have obtained if he had chosen asset-𝑗. The function 

𝑓(∙) measures the individual’s regret or rejoice of a decision and is known as the 

“regret-rejoice function” by Loomes and Sugden (1982). Regret Theory assumes that, 

faced with a choice between asset-𝑖 and asset-j, an individual acts to maximize his 

“expected modified utility”; that is, the individual strictly prefers asset-𝑖 if  

                                                   
9 For detailed discussions on the difference between regret and disappointment, see 
Zeelenberg et al. (1998) and Zeelenberg et al. (2000). See also Bell (1985) and Loomes 
and Sugden (1986) for studies on the effects of disappointment on economic decisions. 
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E[𝑢�𝑟𝑖, 𝑟𝑗�] > 𝐸[𝑢�𝑟𝑗, 𝑟𝑖�].                                              (3) 

Under the assumption that 𝑓(0) = 0, 𝑓′(𝑥) > 0, and 𝑓”(𝑥) > 𝑓” (−𝑥) for 𝑥 > 0, these 

authors show that Regret Theory can explain the Allais Paradox and some other 

experimental findings that violate the expected utility theory.10  

Supportive evidence for Regret Theory has been obtained in experiments carried 

out by neuroscientists. For example, Camille et al. (2004) compare behavior of healthy 

people with that of patients with orbitofrontal cortex (OFC) lesions in an experiment 

where subjects make a choice between two gambling tasks. It is found that healthy 

subjects feel regret when they find that the outcome of the chosen gamble is worse than 

the outcome of the unchosen gamble; furthermore, they learn from their emotional 

experiences and try to minimize anticipated regret in future decisions. In contrast, 

OFC patients neither feel regret after making a bad choice nor anticipate regret in 

future decisions. In an experiment with similar gambling tasks, Coricelli et al. (2005) 

use functional magnetic resonance imaging (fMRI) to investigate the brain regions 

involved in regret. They find that subjects exhibit increasing avoidance to anticipated 

regret after repeatedly experiencing regret and that this learning process is 

accompanied by increased activity in the OFC and amygdala. These results are 

confirmed by Chandrasekhar et al. (2008) and others. For surveys of related studies in 

neuroscience, see Coricelli et al. (2007), Barbey et al. (2009), and Crespi et al. (2012). 

Studies of experimental economics also provide support for Regret Theory. See 

Zeelenberg (1999) and Zeelenberg et al. (2000) for a review.  

 

                                                   
10 See Kahneman and Tversky (1979) for experimental evidence about the Allais 
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3. A Special Case  

Following Regret Theory, the present paper assumes that investors are 

regret-averse; however, unlike the original model of Regret Theory, where investors buy 

either asset-𝑖 or asset-𝑗, the present paper allows investors to choose inaction as well. 

To illustrate the basic idea, the analysis begins with a special case where investors 

have same attitude toward regret over action and regret over inaction; a more general 

version of the model is provided in the next section, where regret over inaction and 

regret over action are treated differently.   

The framework of the model is as follows. In the market, a risky asset with 

uncertain value 𝑉 is traded whose prior distribution is  

𝑉 = � 1,    𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜇     
  0,    𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 𝜇                                       (4) 

where 0 < 𝜇 < 1. Each investor can choose among three positions: long, short, and not 

trading. Let 𝑥 ∈ {1, 0,−1} represent an investor’s choices: 𝑥 = 1 if the investor buys 

one unit of the asset, 𝑥 = −1 if he sells one unit of the asset, and 𝑥 = 0 if he decides 

not to trade. With 𝑝 representing the price of the asset and 𝑟 = 𝑟(𝑥) the return on 

position 𝑥, an investor’s utility maximizing problem can be expressed as follows:             

max𝑥 𝐸[𝑢(𝑟(𝑥))]                                                     (5) 

where  

𝑟(𝑥) = �
𝑉 − 𝑝, 𝑖𝑖 𝑥 = 1

0,  𝑖𝑖 𝑥 = 0
  𝑝 − 𝑉, 𝑖𝑖 𝑥 = −1.

                                          (6)                                      

Following Bell (1982), Loomes and Sugden (1982), and Quiggin (1994), we assume 

that 𝑢(∙)  is a “modified utility function” which not only includes the utility of 

                                                                                                                                                           
Paradox and other behaviors that are inconsistent with the theory of expected utility. 
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investment return but also reveals the disutility of regret.   

 

Assumption 1  An investor’s preference is described by the following modified utility 

function:  

          𝑢(𝑟) = 𝑟 − 𝑓(max{𝑟} − 𝑟),                                             (7)                                              

where  

          𝑓(𝑟) = 𝜂√𝑟 ,                                             ( 8 ) 

max{𝑟} = max{𝑟(1), 𝑟(−1)}, and 𝜂 > 0. 

 

This assumption reveals an investor’s counterfactual thinking, which compares 

realized return 𝑟 with the best possible outcome  

        max{𝑟} = �
1 − 𝑝,    𝑖𝑖 𝑉 = 1
       𝑝,   𝑖𝑖 𝑉 = 0.                                            (9) 

Regret caused by counterfactual thinking is measured by the “regret function” 𝑓(⋅) in 

equation (8), where parameter 𝜂  controls the magnitude of regret aversion. 

Assumption 1 is consistent with previous studies of Regret Theory in the sense that the 

disutility of regret is an increasing function of the difference between the factual result 

and “what might have been”.11 The square root function in equation (8) is adopted 

because it largely simplifies the calculation while still preserving most of the important 

                                                   
11 The modified utility function proposed by Bell (1982) and Loomes and Sugden (1982) 
is pairwise. Quiggin (1994) extends Regret Theory to multiple choices and proposes a 
modified utility function that takes the form 𝜙(𝑟𝑖𝑖,𝑚𝑚𝑚{𝑟𝑖𝑖}) where 𝑟𝑖𝑖 is the return 
on the chosen option-𝑖 in state-𝑛, and max{𝑟𝑖𝑖} is the best possible result among all 
options in state-𝑛. Following Muermann et al. (2006), Michenaud and Solnik (2008), 
and Sarver (2008) among others, the present paper uses Quiggin’s version of the 
modified utility function.  
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features of Regret Theory.12 

The trading mechanism follows the sequential trading model developed by Glosten 

and Milgrom (1985). The risky asset is traded at date 𝑡 = 1, 2,⋯ ,𝑇 among informed 

traders of a mass 𝜙, noise traders of a mass 1 − 𝜙, and a single market maker who 

receives all orders. At date 1+T , the true value of 𝑉 will be revealed to the public and 

all positions will be liquidated accordingly. Each informed trader observes a 

conditionally independent signal 𝑠 ∈ {0, 1}  at 𝑡 = 0  with  𝑞 ≡ Pr{𝑠 = 𝑉|𝑉} > 0.5 . At 

each date 𝑡, each informed trader can submit one order to buy or sell one unit of the 

asset, or he can choose to do nothing; each noise trader randomly submits a buy order 

or a sell order of one unit of the asset with equal probability. Trading takes place 

following the mechanism below.   

1. The market maker announces a price 𝑝𝑡 at which he is willing to buy and 

sell the asset.  

2. Informed traders and noise traders submit orders to the market maker.  

3. The market maker randomly picks one piece of the order from the pool of 

orders and executes at price 𝑝𝑡. Let 𝑥𝑡 denote the sign of the order executed 

at date 𝑡: if it is a buy order, 𝑥𝑡 = 1; if it is a sell order, 𝑥𝑡 = −1.  

4. 𝑥𝑡 is announced to the public after the order has been executed.   

The history of previous trading rounds, denoted by ℎ𝑡 ≡ { (𝑝𝜏, 𝑥𝜏), 𝜏 = 1,2,⋯ , 𝑡 − 1} 

                                                   
12 The regret function in Assumption 1 can be extended to the case where there is a 
continuum of options. For example, we can assume that an investor chooses 𝑥 ∈ [−1,1] 
with 𝑟(𝑥) = (𝑣 − 𝑝)𝑥 and max{𝑟} = max{𝑟(𝑥)|𝑥 ∈ [−1,1]}. However, a difficulty in this 
case is that inaction does not differ from buying or selling an infinitely small amount of 
the asset. Because an important purpose of the present paper is to illustrate the effects 
of regret over inaction, we adopt the choice set {1, 0,−1} where inaction significantly 
differs from actions.  
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with ℎ1 = Φ, is public information available to all market participants. The expected 

value of the asset conditional on this public information, denoted by 𝜇𝑡 ≡ Pr{𝑉 = 1|ℎ𝑡} 

with 𝜇1 = 𝜇, is called “public belief”, which is a sufficient statistic of public information. 

At the end of each trading round, public belief is updated through Bayesian learning; 

𝜇𝑡+1 = 𝑃𝑃 {𝑉 = 1|ℎ𝑡 ,𝑥𝑡}.                                              

The market maker sets the price of the asset equal to the conditional expectation of 

asset value:   

          𝑝𝑡 = 𝜇𝑡.                                                           (10) 

Different from the original model of Glosten and Milgrom (1985), bid-ask spread is 

assumed zero to simplify the analysis. 

Each informed trader calculates his expected return conditioned on both public 

information and private information. Because of this information advantage, an 

informed trader who has received good news 𝑠 = 1 has a positive expected return 

𝐸[𝑉 − 𝑝𝑡|ℎ𝑡, 𝑠 = 1] > 0 on a long position; therefore, he has an incentive to buy the asset 

and can be called a “bullish trader”. In contrast, an informed trader who has received 

bad news 𝑠 = 0 can be called a “bearish trader” because he can earn a positive 

expected return 𝐸[𝑝𝑡 − 𝑉|ℎ𝑡 , 𝑠 = 0] > 0 by taking a short position. Let 𝐸𝑡[∙] = 𝐸[∙ |ℎ𝑡] 

denote the expectation conditioned on public information, 𝐸𝑡1[∙] = 𝐸[∙ |ℎ𝑡, 𝑠 = 1] the 

expectation conditioned on public information and positive signal 𝑠 = 1, and 𝐸𝑡0[∙] =

𝐸[∙ |ℎ𝑡 , 𝑠 = 0] the expectation conditioned on public information and negative signal 

𝑠 = 0. According to the Bayesian rule, a bullish trader’s expectation about asset value, 

denoted by 𝜇𝑡1 ≡ 𝐸𝑡1[𝑉], and a bearish trader’s expectation, denoted by 𝜇𝑡0 ≡ 𝐸𝑡0[𝑉], are 

as follows.   
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          𝜇𝑡1 = 𝜇𝑡𝑞
𝜇𝑡𝑞+(1−𝜇𝑡)(1−𝑞)

= 𝜆𝑡𝜆𝑞
1+𝜆𝑡𝜆𝑞

,                                   (11) 

          𝜇𝑡0 = 𝜇𝑡(1−𝑞)
𝜇𝑡(1−𝑞)+(1−𝜇𝑡)𝑞

= 𝜆𝑡/𝜆𝑞
1+𝜆𝑡/𝜆𝑞

                                  (12) 

where 𝜆𝑡 ≡
𝜇𝑡

1−𝜇𝑡
 and 𝜆𝑞 ≡

𝑞
1−𝑞

 are likelihood ratios.  

Next, consider the decision-making problem faced by an informed trader, whose 

current position on the asset is zero.13 If this trader builds position 𝑥 at date 𝑡, his 

expected utility will be 𝑈𝑡𝑠(𝑥) ≡ 𝐸𝑡𝑠[𝑢(𝑟(𝑥))], where 𝑢(∙) is the modified utility function 

in equations (7)-(8), 𝑟(𝑥) = (𝑉 − 𝑝𝑡)𝑥, and 𝑥 ∈ {1, 0,−1}. Table 1 illustrates 𝑟(𝑥) and 

𝑢(𝑟(𝑥)) for 𝑥 ∈ {1, 0,−1}. It is easy to see that  

      𝑈𝑡𝑠(1) = 𝜇𝑡𝑠(1 − 𝑝𝑡) − (1 − 𝜇𝑡𝑠)�𝑝𝑡 + 𝜂�2𝑝𝑡�,                           (13) 

𝑈𝑡𝑠(0) = −𝜂𝜇𝑡𝑠�1 − 𝑝𝑡 − 𝜂(1 − 𝜇𝑡𝑠)�𝑝𝑡,                                 (14) 

𝑈𝑡𝑠(−1) = 𝜇𝑡𝑠�𝑝𝑡 − 1 − 𝜂�2(1 − 𝑝𝑡)�+ (1 − 𝜇𝑡𝑠)𝑝𝑡  .                       (15) 

 

Table 1  Return and utility of each position. 
 𝑟(1) 𝑟(0) 𝑟(−1) max {𝑟} 𝑢(𝑟(1)) 𝑢(𝑟(0)) 𝑢(𝑟(−1)) 

𝑉 = 1 1 − 𝑝𝑡 0 −(1 − 𝑝𝑡) 1 − 𝑝𝑡 1 − 𝑝𝑡 −𝜂�(1 − 𝑝𝑡) 𝑝𝑡 − 1 − 𝜂�2(1 − 𝑝𝑡) 
𝑉 = 0 −𝑝𝑡 0 𝑝𝑡 𝑝𝑡 −𝑝𝑡 − 𝜂�2𝑝𝑡 −𝜂�𝑝𝑡 𝑝𝑡 

 

It is worth noting that 𝑈𝑡𝑠(𝑥) can be explained as an informed trader’s expected 

utility if he builds position 𝑥 at date 𝑡 and keeps this position unchanged until the 

final date. At first glance, it seems that the informed trader can have higher expected 

utility if he dynamically adjusts his position in future trading rounds. However, we 

argue that when a trader is choosing position 𝑥 at date 𝑡, he need not consider future 

                                                   
13 At any date 𝑡, while the whole population is a continuum of mass one, informed 
traders who have already built a non-zero positon in previous trading rounds have 
mass zero. Thus, without loss of generality, we can neglect these traders and restrict 
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dynamic trading, because the probability that he can successfully change his position 

in future trading rounds is too small.14 Therefore, without loss of generality, we can 

assume that at each date 𝑡 an informed trader with signal 𝑠 ∈ {0, 1} will act in the 

following way,   

        𝑥𝑡1 = �
   1, 𝑖𝑖 𝑈𝑡1(1) ≥ max{𝑈𝑡1(0),𝑈𝑡1(−1)}
   0, 𝑖𝑖 𝑈𝑡1(0) > max{𝑈𝑡1(1),𝑈𝑡1(−1)}
−1, 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒;

                           (16) 

        𝑥𝑡0 = �
  −1, 𝑖𝑖 𝑈𝑡0(−1) ≥ max{𝑈𝑡1(1),𝑈𝑡1(0)}
   0, 𝑖𝑖 𝑈𝑡0(0) > max{𝑈𝑡0(1),𝑈𝑡0(−1)}
1, 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

                           (17) 

where 𝑥𝑡𝑠 = 1 means the trader submits a buy order, 𝑥𝑡𝑠 = −1 means he submits a sell 

order, and 𝑥𝑡𝑠 = 0 means he chooses inaction at date 𝑡. Below, Lemma 1 compares buy 

and sell, and Lemma 2 compares inaction and action. 

 

Lemma 1  Comparing a long position and a short positon, it is found that there exist 

                                                                                                                                                           
our analysis to investors whose current position is zero.  
14 To see this, consider an investor who builds position 𝑥 at date 𝑡 and follows a 
dynamic trading strategy in the future. Let 𝑤𝜏  denote the probability that the 
investor’s order submitted at date 𝜏  is executed by the market maker, and let 
𝑤� ≡ max {𝑤𝑡: 𝑡 = 1,2, … ,𝑇}. The probability that the investor can change his position in 
future trading rounds is 1 −∏ (1 −𝑤𝜏) < (𝑇 − 𝑡)𝑤�𝑇

𝜏=𝑡+1 . On the other hand, because 
there are  𝑇 trading rounds in total and the size of each order is one unit, the greatest 
possible return an investor can earn is less than 𝑇. Thus, even if a trader obtains the 
best possible result, his utility is less than 𝑇. Therefore, if an investor with position 𝑥 
at date 𝑡 decides to keep this position until the liquidation date, the expected utility is 
𝑈𝑡𝑠(𝑥); if he decides to adjust his position in the future by following a dynamic trading 
strategy, the increment in his expected utility is less than � 𝑇 − 𝑈𝑡𝑠(𝑥)�(𝑇 − 𝑡)𝑤� . Note 
that the present paper adopts the framework of sequential trading model, where there 
is a continuum of traders whereas only one order is executed in each trading round. 
Thus, 𝑤�  is infinitely small. As a result, for the investor who holds position 𝑥 at date 𝑡, 
whether he will keep this position until 𝑇 + 1 or he will apply a dynamic trading 
strategy in future trading rounds, the expected utility is the same. Therefore, when an 
informed trader is choosing position 𝑥 at date 𝑡, he need not consider future dynamic 
trading; he only need to choose the position 𝑥 that maximizes 𝑈𝑡𝑠(𝑥).  
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𝜇 ∈ (0,0.5) and 𝜇 ∈  (0.5,1) such that  

          �
𝑈𝑡1(1) < 𝑈𝑡1(−1)        𝑓𝑓𝑓 𝜇𝑡 ∈ (0, 𝜇)
𝑈𝑡1(1) = 𝑈𝑡1(−1) 𝑓𝑓𝑓 𝜇𝑡 = 𝜇
𝑈𝑡1(1) > 𝑈𝑡1(−1)        𝑓𝑓𝑓 𝜇𝑡 ∈ (𝜇, 1)

                                (18) 

holds for bullish traders and 

�
𝑈𝑡0(1) < 𝑈𝑡0(−1)        𝑓𝑓𝑓 𝜇𝑡 ∈ (0, 𝜇)
𝑈𝑡0(1) = 𝑈𝑡0(−1) 𝑓𝑓𝑓 𝜇𝑡 = 𝜇
𝑈𝑡0(1) > 𝑈𝑡0(−1)        𝑓𝑓𝑓 𝜇𝑡 ∈ (𝜇, 1)

                                (19)  

holds for bearish traders. 

 

See Appendix A for a proof. Lemma 1 illustrates that an informed trader may not 

always follow his private signal. For a bullish trader, although expected return on a 

long position is always higher than on a short position, if public belief 𝜇𝑡 is low enough, 

the anticipated regret of buying a valueless asset will be so high that the investor 

prefers sell to buy. Symmetrically, a bearish trader prefers buy to sell if the anticipated 

regret of selling a valuable asset is large enough.   

 

Lemma 2  Comparing inaction with action, it is found that for bullish traders,   

�
    𝑈𝑡1(0) < 𝑈𝑡1(−1) 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜇)
𝑈𝑡1(0) < 𝑈𝑡1(1) 𝑓𝑓𝑓  𝜇𝑡 ∈ [𝜇, 1);

                                 (20) 

and for bearish traders, 

�
    𝑈𝑡0(0) < 𝑈𝑡0(−1) 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜇]
𝑈𝑡0(0) < 𝑈𝑡0(1) 𝑓𝑓𝑓  𝜇𝑡 ∈ (𝜇, 1).

                                 (21) 

 

See Appendix A for a proof. Lemma 2 states that neither bullish traders nor 
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bearish traders will choose not trading. To understand this result, note that if an 

investor chooses inaction, he will undoubtedly regret this decision: he will regret not 

having bought the asset when the true value of the asset is found to be 𝑉 = 1 at the 

final date, whereas he will regret not having sold the asset if the true value of the asset 

is revealed to be 𝑉 = 0.  

Following Lemma 1 and Lemma 2, investors’ optimal trading strategies are 

obtained.   

 

Proposition 1  Under Assumption 1, investors’ optimal trading strategies are as 

follows: 

𝑥𝑡1 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0,𝜇)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [𝜇, 1);                          (22) 

𝑥𝑡0 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜇)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [𝜇, 1)                           (23) 

where 0 < 𝜇 < 0.5 < 𝜇 < 1. 

 

The proof for Proposition 1 is abbreviated as it directly follows from Lemma 1 and 

Lemma 2. Recall that the market price of the asset is set at 𝑝𝑡 = 𝜇𝑡 . Therefore, 

Proposition 1 implies that bearish traders will buy if the price is high enough, whereas 

bullish traders will sell if the price drops to a low enough level. In the next section, we 

will generalize this proposition and discuss its implications with more details. Below, 

Table 2 provides some numerical examples where 𝜇 and 𝜇 are defined as in Lemma 1. 

𝑧 is a parameter that controls the magnitude of regret over inaction. In this section, 𝑧 

is set equal to one; a more general model is provided in the next section, where 𝑧 can 
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take different values. To facilitate comparisons with results obtained in the next 

section, Table 2 also includes thresholds 𝜅, 𝜈, 𝜈, and 𝜅, which are defined in the proof 

of Lemma 2 in Appendix A.  

 

Table 2  Numerical examples when 𝑧 = 1.   

Parameters 𝜅 𝜇 𝜈 𝜈 𝜇 𝜅 
𝑧 = 1, 𝜂 = 10, 𝑞 = 0.7 0.0275 0.1371 0.4692 0.5309 0.8629 0.9725 
𝑧 = 1, 𝜂 = 20, 𝑞 = 0.7 0.0289 0.1458 0.4931 0.5069 0.8542 0.9711 
𝑧 = 1, 𝜂 = 10, 𝑞 = 0.8 0.0092 0.0488 0.2129 0.7871 0.9512 0.9908 

 

In Table 2, we can see that 𝜇 is increasing in 𝜂, the magnitude of regret aversion, 

but is decreasing in 𝑞, the precision of informed traders’ signal.  𝜇 depends on 𝜂 and 

𝑞 in a symmetric manner. The following corollary confirms this observation.   

 

Corollary 1  𝜇 and 𝜇 depend on 𝜂 and 𝑞 with  

(i)   
𝜕𝜇

𝜕𝜕
> 0, 𝜕𝜇

𝜕𝜕
< 0;   

(ii)   
𝜕𝜇

𝜕𝜕
< 0, 𝜕𝜇

𝜕𝜕
> 0.   

 

See Appendix A for a proof. Statement (i) states that region [ 𝜇, 1), where bullish 

traders buy, and region (0, 𝜇], where bearish traders sell, shrink as 𝜂 increases. The 

intuition of this result is straightforward: the larger is the magnitude of regret aversion, 

the stronger is an informed trader’s tendency to ignore his private information. 

Statement (ii) suggests that regions [ 𝜇, 1) and (0, 𝜇] expand as information precision 

𝑞 increases. This result is also intuitive: the more precise is private information, the 
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higher expected return an informed trader can obtain by following his private 

information, and the stronger is the incentive to do so.  

When informed traders act according to the strategy shown in Proposition 1, it is 

easy to see that the price follows a martingale with respect to public information:  

𝐸[𝑝𝑡+1|ℎ𝑡] = 𝐸[𝐸[𝑉|ℎ𝑡+1]|ℎ𝑡] = 𝐸[𝑉|ℎ𝑡] = 𝑝𝑡. However, the market maker’s pricing rule 

in equation (10) is assumed exogenously. This setting, which is in line with the 

sequential trading model of Glosten and Milgrom (1985), facilitates the analysis of 

bubble riding, herding, and other results addressed in Sections 4 and 5, but it also 

limits the model’s ability to explain price movements. To examine the effects of regret 

on equilibrium price during bubbles and crashes, it is important to endogenize the 

pricing rule. One approach is to adopt other trading mechanisms, such as batch trading. 

This interesting and challenging task is left for our future research. Below, we consider 

a case where the pricing rule is slightly more general than the one in equation (10).  

Note that the market maker faces adverse selection in the following situations: 

𝑥𝑡1 = 1 and 𝑥𝑡0 = −1; 𝑥𝑡1 = 1 and 𝑥𝑡0 = 0; 𝑥𝑡1 = 0 and 𝑥𝑡0 = −1. Because in equation 

(10) the market maker is assumed to set price equal to the expected asset value, he will 

have a negative expected return due to adverse selection. However, as shown in 

Corollary 2 below, the model can be extended to the case where the market maker sets 

a bid-ask spread when he faces adverse selection. Let 𝑝𝑡𝑏 denote the bid price, 𝑝𝑡𝑎 the 

ask price, and 𝑒𝑡 the bid-ask spread.  

 

Corollary 2. ∃𝑒̅ > 0, such that when bid price and ask price are set at 

𝑝𝑡𝑎 = �
𝜇𝑡 + 𝑒𝑡

2
𝑖𝑖  𝑥𝑡1 > 𝑥𝑡0

𝜇𝑡 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒;
                       (24) 
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𝑝𝑡𝑏 = �
𝜇𝑡 −

𝑒𝑡
2

𝑖𝑖  𝑥𝑡1 > 𝑥𝑡0

𝜇𝑡 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒
                        (25) 

where 0 ≤ 𝑒𝑡 < 𝑒̅  and 0 < 𝑝𝑡𝑎 ≤ 𝑝𝑡𝑏 < 1 , informed traders will act according to the 

trading strategy given by equations (22)-(23).  

 

    A proof for this corollary is provided in Appendix A. In equations (24)-(25), we 

require that the bid-ask spread is zero when there is no adverse selection; this 

assumption is consistent with the spirit of Glosten and Milgrom (1985), who establish 

the relationship between bid-ask spread and adverse selection.15 Obviously, asset price 

{𝑝𝑡𝑎 ,𝑝𝑡𝑏}  in equations (24)-(25) and trading strategy {𝑥𝑡1,𝑥𝑡0}  in equations (16)-(17) 

depend on each other. Hence, an equilibrium should be defined as a pair of pricing rule 

and trading strategy such that, given the market maker’s pricing rule, investors’ 

trading strategy satisfies equations (16)-(17) and, given investors’ trading strategy, the 

market maker’s pricing rule satisfies (24)-(25) and 0 < 𝑝𝑡𝑎 ≤ 𝑝𝑡𝑏 < 1. In Appendix A, we 

prove that such equilibriums do exist, where informed traders act according to the 

trading strategy in equations (22)-(23).   

Corollary 2 illustrates that results obtained in this section hold in the case where a 

bid-ask spread exists but is small. However, the existence of a bid-ask spread makes 

                                                   
15 In the original model of Glosten and Milgrom (1985), the market maker always faces 
adverse selection, and the bid-ask spread is set equal to the market maker’s expected 
loss due to adverse selection. In the present paper, because informed traders may 
ignore their private information, the market maker does not always face adverse 
selection. For this reason, in Corollary 2, we assume that the market maker can set a 
non-zero bid-ask spread only when he faces adverse selection. Moreover, because it is 
beyond the scope of this paper to examine the relationship between bid-ask spread and 
regret aversion, we do not require the bid-ask spread to be exactly equal to the expected 
loss arising from adverse selection; this simplification enables us to avoid linking the 
bid-ask spread to regret aversion 𝜂. 
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the model less tractable. Therefore, we will restrict our attention to the situation where 

there is no bid-ask spread and keep the assumption of equation (10) for the remainder 

of this paper.     

 

4.  Investor Behavior 

In the previous section, we assume that an investor has same attitude toward 

regret over action and regret over inaction. However, psychology studies indicate that 

regret over inaction differs from regret over action. In their seminal studies about 

regret, Kahneman and Tversky (1982) and Kahneman and Miller (1986) show that 

regret over action tends to be stronger than regret over inaction. One experiment by 

Kahneman and his colleagues is as follows (Quoted from Kahneman and Miller (1986), 

pp. 145).  

Mr. Paul owns shares in Company A. During the past year he considered 

switching to stock in company B, but he decided against it. He now finds out 

that he would have been better off by $1,200 if he had switched to the stock 

of company B. Mr. George owned shares in company B. During the past year 

he switched to stock in company A. He now finds that he would have been 

better off by $1200 if he had kept his stock in company B. Who feels greater 

regret?  

Mr. Paul  8%                       Mr. George  92%      (N=138) 

Obviously, most subjects thought that regret over action is stronger than regret 

over inaction. Kahneman and Miller (1986) suggest that a possible reason for this 

phenomenon is that inaction is generally thought to be more normal than action. 

Experiments by Landman (1987a) obtained similar results. Zhou et al. (2010), who 
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measure subjects’ brain activities when they regret, also find that emotional responses 

after action are stronger than emotional responses after inaction. On the other hand, 

Gilovich and Medvec (1994) suggest that regret over action and regret over inaction 

have a time pattern. In the short term, people tend to regret more strongly actions such 

as something they have done wrongly. However, in the long term, most people more 

strongly regret inactions such as missed educational opportunities, a failure to seize 

the moment and so on.16 For a review of related studies, see Gilovich and Medvec 

(1995), Kahneman (1995), and Anderson (2003).  

Based on these findings, in this section we extend Regret Theory, which treats 

regret over action only, into the dimension where regret over inaction differs from 

regret over inaction.  

 

Assumption 2  An investor’s modified utility function takes the following form: 

𝑢�𝑟(𝑥)� = �
𝑟(𝑥) − 𝜂�max{𝑟} − 𝑟(𝑥)        𝑓𝑓𝑓 𝑥 ∈ {1,−1}
𝑟(𝑥) − 𝜂𝜂�max{𝑟} − 𝑟(𝑥) 𝑓𝑓𝑓 𝑥 = 0

           (26) 

where 𝜂 > 0 and 𝑧 > 0.   

 

Parameter 𝑧  is newly introduced into the modified utility function to reflect 

investors’ different attitudes toward action and inaction: when 𝑧 < 1, regret over 

inaction tends to be weaker than regret over action; when 𝑧 > 1, the situation is 

opposite; when 𝑧 = 1, Assumption 2 reduces to Assumption 1, which has been analyzed 

in the previous section as a special case of our model. Below, Proposition 2 derives 

                                                   
16 Kahneman disagrees with Gilovich and Medvec, arguing that lifetime regret comes 
from wishful thinking rather than counterfactual thinking. See Gilovich, Medvec and 
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investors’ optimal trading strategy in the case where regret over inaction is relatively 

strong.  

 

Proposition 2  If 𝑧 ≥ √2
2

, informed traders’ optimal strategies are as follows: 

𝑥𝑡1 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜇)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [𝜇, 1);                         (27) 

𝑥𝑡0 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜇)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [𝜇, 1)                       (28) 

where 0 < 𝜇 < 0.5 < 𝜇 < 1. 

 

See Appendix B for a proof. Key results are illustrated by Figure 1, where 

thresholds 𝜅, 𝜇, 𝜈, 𝜈, 𝜇, and 𝜅 and functions 𝐾1(𝜇𝑡), 𝑀1(𝜇𝑡), 𝐺1(𝜇𝑡), 𝐾0(𝜇𝑡), 𝑀0(𝜇𝑡), 

and 𝐺0(𝜇𝑡) are defined in Appendix B. In this proposition, √2
2

 is a threshold for 𝑧 

because 𝜅 = 𝜇 = 𝜈 and 𝜈 = 𝜇 = 𝜅 hold at 𝑧 = √2
2

. As shown in the proof, 0 < 𝜅 < 𝜇 <

𝜈 < 1  and 0 < 𝜈 < 𝜇 < 𝜅 < 1  hold for √2
2

< 𝑧 < √2 , which ensures the holding of 

equations (27) and (28). When 𝑧 ≥ √2, investors’ regret over inaction is so strong that 

𝑈𝑡𝑠(0), the expected utility of not trading, is less than 𝑈𝑡𝑠(1) and 𝑈𝑡𝑠(−1) for any 

𝜇𝑡 ∈ (0,1), which also implies equations (27) and (28). Obviously, Proposition 2 is a 

generalization of Proposition 1.  

Investors’ trading strategies in the case of 𝑧 < √2
2

 are addressed by Propositions 3 

and 4, where √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

 is a threshold for 𝑧  because 𝜅 = 𝜅  holds when 𝑧 =

                                                                                                                                                           
Kahneman (1998) for an interesting discussion on this issue among these researchers. 
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√2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

. Note that 𝑧 > 0 by assumption, while √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

> 0 if and only 

if 𝜂 > 𝜆𝑞−1
2

. Thus, the case of 𝑧 < √2
2

 has three subcases: (i) 𝜂 ≤ 𝜆𝑞−1
2

 and √2
1+𝜆𝑞

−

𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 0 < 𝑧 < √2
2

; (ii) 𝜂 > 𝜆𝑞−1
2

 and 0 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 𝑧 < √2
2

; and (iii) 𝜂 > 𝜆𝑞−1
2

 

and 0 < 𝑧 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

. Below, Proposition 3 analyzes subcases (i) and (ii), and 

Proposition 4 treats subcase (iii).  

 

Figure 1 

 

Proposition 3  If √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 𝑧 < √2
2

, informed traders’ optimal strategies are as 

follows: 

𝑥𝑡1 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜈]
0 𝑓𝑓𝑓  𝜇𝑡 ∈ (𝜈,𝜅)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [ 𝜅, 1);

                        (29) 

𝑥𝑡0 = �
−1  𝑓𝑓𝑓 𝜇𝑡 ∈ (0, 𝜅]
0 𝑓𝑓𝑓 𝜇𝑡 ∈ (𝜅, 𝜈)
1 𝑓𝑓𝑓 𝜇𝑡 ∈ [ 𝜈, 1)

                       (30) 
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where 0 < 𝜈 < 𝜅 ≤ 0.5 ≤ 𝜅 < 𝜈 < 1.  

 

See Appendix B for a proof. In this case, 0 < 𝜈 < 𝜅 ≤ 0.5 ≤ 𝜅 < 𝜈 < 1 holds as 

shown in Figure 2. As a result, bullish traders choose to exit the market when 

𝜇𝑡 ∈ (𝜈, 𝜅), while bearish traders choose to leave when  𝜇𝑡 ∈ (𝜅, 𝜈). 

 

Figure 2.  

 

Proposition 4  If 𝜂 > 𝜆𝑞−1
2

 and 𝑧 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂(1+𝜆𝑞)

, informed traders’ optimal 

strategies are as follows: 

𝑥𝑡1 = �
−1 𝑓𝑓𝑓  𝜇𝑡 ∈ (0, 𝜈]
0 𝑓𝑓𝑓  𝜇𝑡 ∈ (𝜈,𝜅)
1 𝑓𝑓𝑓  𝜇𝑡 ∈ [ 𝜅, 1);

                        (31) 

𝑥𝑡0 = �
−1  𝑓𝑓𝑓 𝜇𝑡 ∈ (0, 𝜅]
0 𝑓𝑓𝑓 𝜇𝑡 ∈ (𝜅, 𝜈)
1 𝑓𝑓𝑓 𝜇𝑡 ∈ [ 𝜈, 1)

                       (32) 

where 0 < 𝜈 < 𝜅 < 0.5 < 𝜅 < 𝜈 < 1. 
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   See Appendix B for a proof. In this case, regret over inaction is so weak such that  

𝜈 < 𝜅 < 𝜅 < 𝜈 holds. As exhibited in Figure 3, in this case, there is a “non-trading 

region” (𝜅, 𝜅) where both bullish traders and bearish traders choose inaction.  

 

Figure 3 

 

It is clear from Propositions 2-4 that investors’ trading strategies are sensitive to 

the magnitude of regret over inaction. Nevertheless, one result is commonly obtained in 

all cases. That result is that, if the price is high enough, bearish traders are willing to 

buy the asset even though they know that the asset is overpriced; conversely, if the 

price is low enough, bullish traders will sell the asset even though they know that the 

asset is underpriced. We argue that this result provides a theoretical explanation of 

“bubble riding” and “fire selling”. Because the structure of the model is symmetric, in 

the discussion below, we focus on “bubble riding” behavior by informed traders.  

During a bubble, informed traders who are aware of the overpricing may choose to 

ride the bubble instead of trading against it; this phenomenon has been extensively 

studied in the literature of asset bubbles. For example, Abreu and Brunnermeier (2003) 
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illustrate that incomplete information and lack of synchronization among traders can 

explain this behavior. In their model, an investor who learns of the overpricing of the 

asset does not know how many other traders are aware of the bubble; hence, to 

maximize expected return, the investor will choose to ride the bubble for a certain 

period. This model is extended by Doblas-Madrid (2012) and Matsushima (2013). 

Doblas-Madrid (2012) show that investors will ride the bubble for a longer period if 

they can hide their orders among orders from noise traders; Matsushima (2013) 

illustrates that even when all investors get to know the bubble simultaneously, an 

investor may still ride the bubble if he is not sure whether other investors are rational. 

Another explanation is that informed investors may ride a bubble in the hope that they 

can sell the asset at a higher price to “greater fools” who are unaware of the bubble. For 

example, De Long et al. (1990) show that rational informed traders may buy an 

overvalued asset hoping to sell it to positive-feedback traders in the next period. In the 

model of Allen et al. (1993), because the occurrence of a bubble is not common 

knowledge, an investor who has noticed the bubble may still hold the asset hoping that 

some greater fool in the market will buy the asset at a higher price. Conlon (2004) 

extends this model by showing that even when the occurrence of a bubble is common 

knowledge, the bubble may still be prolonged.17  

The present paper provides a complementary explanation for bubble riding: regret 

avoidance. In our model, the price of the asset reveals all information that has been 

accumulated in past trading rounds; the higher is the price, the higher is the 

                                                   
17 There are other approaches too. For example, DeMarzo et al. (2008) develop an 
overlapping generations model where rational investors invest in overvalued assets 
because of relative wealth concerns. Allen and Gorton (1993) show that fund managers 
may buy overpriced assets because of agency relationships. For a detailed review of the 
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probability that the true value of the asset is high. Hence, when the price is high, if a 

trader sells the asset, there is a high probability that he will regret later that he has 

bet on the wrong side; if he chooses not trading, the anticipated regret over inaction is 

also high. In contrast, the anticipated regret of buying is relatively low in this case 

because there is a high probability that the true value of the asset is high. For a bearish 

trader who observes a negative signal, although the expected return of selling is 

positive, if the price is high enough, anticipated regret of selling or inaction will be so 

strong that he will choose buy to avoid regret.  

In some sense, the interpretation of bubble riding presented in the this paper 

illustrates a struggle between emotion and rational calculation. We argue that this 

interpretation is intuitive and compelling. In the real world, it is quite plausible that 

people ride a bubble because they fear that they will regret missed opportunities later. 

For example, in their famous book about the history of bubbles, Kindleberger and 

Aliber (2005, pp30) describe how a bubble forms. “A follow-the-leader process develops 

as firms and households see that the speculators are making a lot of money. ‘There is 

nothing as disturbing to one’s well-being and judgment as to see a friend get rich’. 

Unless it is to see a non-friend get rich. Similarly banks may increase their loans 

because they are reluctant to lose market share to other lenders. More and more firms 

and households begin to participate in the scramble for high profits. Making money 

never seemed easier. Speculation for capital gains leads from normal, rational behavior 

to what has been described as a ‘mania’ or a ‘bubble’.” Obviously, emotion is a strong 

driver for this “follow-the-leader process.” 

As shown in Propositions 3 and 4, the model in this paper can explain why 

                                                                                                                                                           
literature, see Brunnermeier and Oehmke (2013).  
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investors exit and reenter the market and why non-trading can occur. Moreover, as 

discussed in Section 6, some testable implications can be derived from this model. 

These results also distinguish our approach from rival theories of bubbles and crashes.       

 

5.  Market Turbulence  

In this section, we examine the effects of regret on aggregate market fluctuations. 

As shown in previous sections, to avoid anticipated regret of betting on the wrong side, 

investors buy when the market price of the asset is high and sell when the price is low. 

Such behavior will further destabilize the market and cause market turbulence that, in 

the setting of the present paper, occurs in the form of herds.  

A “herd” generally refers to the phenomenon of a large group of people behaving 

similarly. Herds can occur in various circumstances and for different reasons; for 

example, clothing fashions, social movements, religious movements, war fever, 

attitudes toward alcohol, cigarettes and drugs, attitudes toward marriage and sex, 

choice of political candidates, business strategies, medical practice and so on.18 In 

financial markets, herding behavior can be observed in bank runs, bubbles and crashes. 

Finance researchers are particularly interested in a special form of herd, 

“informational cascade.” According to the definition given by Banerjee (1992) and 

Bikhchandani et al. (1992), an informational cascade occurs when it is optimal for an 

investor to imitate the choice of the preceding investor without regard to his own 

information. The reason for the occurrence of a cascade is informational externality. 

For example, in a market where the price of an asset is fixed and investors are equally 

informed, if the first and the second traders both buy the asset, the third trader will 
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buy regardless of his own information; a buy-herd thus occurs because all the other 

traders will make the same decision.  

   In the model of the present paper, a buy-herd occurs when the price of the asset is 

high, whereas a sell-herd occurs when the price is low. However, our model differs from 

informational cascades models in the following ways. First, herds arise from regret 

aversion rather than from informational externality. To see this, we only need to note 

that if investors do not have regrets, that is, 𝜂 = 0, then bullish traders always buy and 

bearish traders always sell. Second, in informational cascade models, investors do not 

buy overvalued assets or sell undervalued assets; as a result, even during a cascade, an 

informed trader’s expected return is still positive. In contrast, our model shows that an 

informed trader who joins a herd to avoid anticipated regret may have negative 

expected returns. Third, depending on the magnitude of regret over inaction, “partial 

herds” and non-trading can occur in the model of the present paper.19  

 

Corollary 3 (Herd) In the case of 𝑧 ≥ √2
2

, trading and information accumulation in the 

market take place as follows.  

(i) If 𝑝𝑡 ∈ [𝜇, 𝜇], bullish traders buy and bearish traders sell:    

       𝑥𝑡1 = 1 and 𝑥𝑡0 = −1;                                                (33) 

                                                                                                                                                           
18 See discussions by Bikhchandani et al. (1992) and Bikhchandani et al. (1998). 
19 Informational cascade can provide intuitive explanations for bubbles and crashes; 
however, as Avery and Zemsky (1998), Chari and Kehoe (2004), and Park and 
Sabourian (2011) have pointed out, the original model of Bikhchandani et al. (1992) 
relies on the assumption of fixed prices, which obviously does not apply to financial 
markets. Furthermore, as noted by Shiller (1995), first movers play a critical role in 
informational cascade models. The model in the present paper does not have these 
problems because the market price is flexible and the occurrence of a herd does not rely 
on fashion leaders. 
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𝜇𝑡+1 = �

𝜇𝑡𝛿
𝜇𝑡𝛿+(1−𝜇𝑡)(1−𝛿)

𝑖𝑖  𝑥𝑡 = 1
𝜇𝑡(1−𝛿)

𝜇𝑡(1−𝛿)+(1−𝜇𝑡)𝛿
𝑖𝑖 𝑥𝑡 = −1

                                   (34) 

where 𝛿 ≡ 𝜙𝜙 + (1 − 𝜙)/2.  

(ii) If 𝑝𝑡 ∈ (0, 𝜇), a “sell-herd” occurs where all informed traders sell:  

𝑥𝑡1 = 𝑥𝑡0 = −1;                                                      (35) 

𝜇𝑡+1 = 𝜇𝑡 .                                                          (36) 

(iii) If 𝑝𝑡 ∈ (𝜇, 1), a “buy-herd” occurs where all informed traders buy:  

𝑥𝑡1 = 𝑥𝑡0 = 1;                                                       (37) 

𝜇𝑡+1 = 𝜇𝑡 .                                                         (38) 

 

Proof for this corollary is abbreviated because it is a direct implication of 

Proposition 2. According to Corollary 2, informed traders follow their private signals as 

long as the price of the asset remains inside the “truth-telling” region [𝜇, 𝜇]. If the price 

drops below 𝜇, a sell-herd will occur in the market, where all informed traders submit 

sell orders regardless of their private information; if the price rises above 𝜇, a buy-herd 

will occur, where all informed traders submit buy orders. These results are illustrated 

in Figure 4.  

 

Figure 4 

 

Corollary 4 (Herd and partial herd) In the case of √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂(1+𝜆𝑞)

≤ 𝑧 < √2
2

, trading and 
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information accumulation in the market take place as follows.  

(i) If 𝑝𝑡 ∈ [𝜅, 𝜅], bullish traders buy and bearish traders sell. 

(ii) If 𝑝𝑡 ∈ (𝜈,𝜅), a “partial sell-herd” occurs where all bearish traders submit sell 

orders, while all bullish traders exit the market:   

𝑥𝑡1 = 0 and 𝑥𝑡0 = −1;                                               (39) 

𝜇𝑡+1 = �

𝜇𝑡𝜁
𝜇𝑡𝜁+(1−𝜇𝑡)(1−𝜉)

𝑖𝑖  𝑥𝑡 = 1
𝜇𝑡(1−𝜁)

𝜇𝑡(1−𝜁)+(1−𝜇𝑡)𝜉
𝑖𝑖 𝑥𝑡 = −1

                                   (40) 

where 𝜁 ≡ (1−𝜙)/2
1−𝜙𝜙

 and 𝜉 ≡ 𝜙𝜙+(1−𝜙)/2
1−𝜙(1−𝑞) . 

(iii) If 𝑝𝑡 ∈ (𝜅, 𝜈), a “partial buy-herd” occurs where all bullish traders submit buy 

orders, while all bearish traders exit the market:    

𝑥𝑡1 = 1 and 𝑥𝑡0 = 0;                              (41) 

𝜇𝑡+1 = �

𝜇𝑡𝜉
𝜇𝑡𝜉+(1−𝜇𝑡)(1−𝜁)

𝑖𝑖  𝑥𝑡 = 1
𝜇𝑡(1−𝜉)

𝜇𝑡(1−𝜉)+(1−𝜇𝑡)𝜁
𝑖𝑖 𝑥𝑡 = −1.

                    (42) 

(iv) If 𝑝𝑡 ∈ (0, 𝜈], a sell-herd occurs where all informed traders sell.                                           

(v) If 𝑝𝑡 ∈ [𝜈, 1), a buy-herd occurs where all informed traders buy.  

 

 Corollary 4 follows from Proposition 3. The proof is apparent and is therefore 

abbreviated. The term “partial” emphasizes the fact that traders only partially ignore 

their private information. For example, bearish traders trade against their private 

information in a buy-herd; however, in a partial buy-herd, although they ignore their 

private information, they do not trade against it. A partial herd in the present paper is 

similar to a situation addressed by Lee (1998), in whose model informed traders wait 

and do not trade until someone who has superior information breaks the ice. 
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Nevertheless, there is an important difference: Lee (1998) uses the trading cost as a 

“brake” that prevents informed investors from trading. However, in the present paper, 

the brake is investors’ anticipated regret.   

Figure 5 illustrates the regions of herds and partial herds. [𝜅, 𝜅] is a truth-telling 

region where all informed traders act following their signals. If the price drops below 𝜅, 

a partial sell-herd occurs, where bullish traders exit while bearish traders and noise 

traders remain in the market. During the partial sell-herd, because buy orders only 

come from noise traders and all market participants know about this, one tends to 

presume that the price will remain unchanged after the market maker executes a sell 

order. However, as shown in equation (42), an interesting result obtained is that the 

asset price reacts to both buy and sell during partial herds. If the price rebounds and 

rises above 𝜅, then bullish traders will return to the market to buy and the partial 

sell-herd will end; if the price keeps dropping and crosses threshold 𝜈, then bullish 

traders will return to the market to sell, and the partial herd will develop into a full 

herd of sellers.  

 

Figure 5  

 

The above results suggest that there are three stages for a sell-herd to form in a 

market. At first, the price drops but bullish traders still buy; in the next stage, the price 

drops deeply and bullish traders stop buying; in the final stage, the price drops to such 

a low level that even bullish traders turn to selling. Buy-herd and partial buy-herd 
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occur in a symmetric manner. It is easy to see that the regions of herds and partial 

herds depend on 𝑧, the magnitude of regret over inaction. If 𝑧 becomes smaller, the 

regions of partial herds in Figure 5 will expand, while the truth-telling region will 

shrink. If regret over inaction becomes so weak that 𝑧 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂(1+𝜆𝑞)

, then, as 

shown in the next corollary, the truth-telling region will entirely disappear and a 

“non-trading region” will appear.  

 

Corollary 5 (Herd, partial herd, and non-trading) In the case of 𝜂 > 𝜆𝑞−1
2

 and 𝑧 <

√2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂(1+𝜆𝑞)

, trading and information accumulation in the market take place as 

follows.  

(i) If 𝑝𝑡 ∈ (𝜅, 𝜅), informed traders do not trade: 

𝑥𝑡1 = 𝑥𝑡0 = 0;                                                       (43) 

𝜇𝑡+1 = 𝜇𝑡.                                                         (44) 

(ii) If 𝑝𝑡 ∈(𝜈,𝜅], a partial sell-herd occurs.  

(iii) If 𝑝𝑡 ∈ [𝜅, 𝜈), a partial buy-herd occurs.     

(vi) If 𝑝𝑡 ∈ (0, 𝜈], a sell-herd occurs.  

(vii) If 𝑝𝑡 ∈ [𝜈, 1), a buy-herd occurs.   

 

Corollary 5 is a direct implication of Proposition 4, so the proof is abbreviated. The 

main results are illustrated in Figure 6, where (𝜅, 𝜅)  is the newly appeared 

non-trading region.  
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Figure 6 

 

The intuition of non-trading is obvious. When regret over inaction is very weak, 

investors’ regret over action becomes relatively strong. Unless the price is very high or 

very low, investors are reluctant to take actions. As a result, non-trading can occur in 

market where all informed traders choose not trading.  

    Table 3 provides some numerical examples where 𝜂  and 𝑞  are fixed while 𝑧 

takes different values. These examples clearly illustrate that investors’ strategies are 

sensitive to 𝑧, which controls the magnitude of regret over inaction. When 𝑧 = 1, there 

is a large truth-telling region (0.1371, 0.8629) where all investors act following their 

signals. When 𝑧 = 0.5, a region of partial sell-herd (0.0465, 0.3395) and a region of 

partial buy-herd (0.6605, 0.9535) appear, while the truth-telling region dramatically 

shrinks to (0.3595, 0.6605). When 𝑧 = 0.25, there is a huge non-trading region (0.2366, 

0.7634) between the two partial herd regions, and the truth-telling region totally 

disappears.  

 

Table 3  Numerical examples with 𝑧 = 1, 0.5, 0.25.  
Parameters Thresholds 

𝑧 = 1, 𝜂 = 10, 𝑞 = 0.7 
(The case of Corollary 3) 𝜅 =0.0275 𝜇 =0.1371 𝜈 =0.4692 𝜈 =0.5309 𝜇 =0.8629 𝜅 =0.9725 

𝑧 = 0.5, 𝜂 = 10, 𝑞 = 0.7 
(The case of Corollary 4) 𝜈 =0.0465 𝜇 =0.1371 𝜅 =0.3395 𝜅 =0.6605 𝜇 =0.8629 𝜈 =0.9535 

𝑧 = 0.25, 𝜂 = 10,𝑞 = 0.7 
(The case of Corollary 5) 𝜈 =0.0076 𝜇 =0.1371 𝜅 =0.2366 𝜅 =0.7634 𝜇 =0.8629 𝜈 =0.9924 
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Comparing thresholds for buy-herd in Table 3: if 𝑧 = 0.25,  a buy-herd occurs when 

the price rises above 0.9924; if 𝑧 = 0.5,  the threshold is 0.9535; and if 𝑧 = 1, the 

threshold is 0.8629. Thus, the stronger is regret over inaction, the lower is the 

threshold, and the easier it is for a buy-herd to occur. Symmetrically, Table 3 also 

illustrates that the stronger is regret over inaction, the easier it is for a sell-herd to 

occur. Below, we formalize this observation. Let  

𝑝 = �
𝜇 𝑓𝑓𝑓  𝑧 ≥ √2

2
     

𝜈     𝑓𝑓𝑓  0 < 𝑧 < √2
2

;
                          (45) 

𝑝̅ = �
𝜇 𝑓𝑓𝑓  𝑧 ≥ √2

2
     

𝜈     𝑓𝑓𝑓  0 < 𝑧 < √2
2

.
                          (46) 

It follows from Corollaries 3-5 that given any 𝑧 > 0 and 𝜂 > 0, a sell-herd occurs 

whenever the asset price drops bellow 𝑝, while a buy-herd occurs whenever the asset 

price rises above 𝑝̅.  

 

Corollary 6    

(i) Given any 𝑧 > 0, 𝑝 is strictly increasing in 𝜂, and 𝑝̅ is strictly decreasing in 𝜂.  

(ii) Given any 𝜂 > 0, 𝑝 is an increasing function of 𝑧 that is strictly increasing on 

(0, √2
2

), and 𝑝̅ is a decreasing function of 𝑧 that is strictly decreasing on (0, √2
2

).  

 

Statement (i) states that the larger is regret aversion, the easier it is for herds to 

occur. Statement (ii) claims that the stronger is regret over inaction, the easier it is for 

herds to occur. See Appendix B for a proof.  
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6. Discussion 

 

This section discusses the economic implications of the model and provides some 

testable results. The basic idea of the present paper is that an investor’s rational 

calculation of expected return can be overwhelmed by anticipated regret. Previous 

sections show that regret aversion can cause the occurrence of herds, partial herds, and 

non-trading in the market. When a buy-herd occurs, all investors try to buy the asset 

regardless of their own information about the asset; following previous studies about 

herd behavior in financial markets, we interpret a buy-herd as a bubble in the asset 

market. Similarly, a sell-herd can be interpreted as a market crash during which all 

investors try to sell.20 Moreover, a partial buy-herd may represent a bull market in 

which bullish traders play the leading role; in contrast, a partial sell-herd may be 

interpreted as a bear market where bullish investors have left and only bearish 

investors and noise traders are active. 

To describe the characteristics shown by the market during herds and partial 

herds, the discussion below will focus on two observable factors. One is the volume of 

orders, which is the number of orders received by the market maker during one trading 

round; the other is “order imbalance”, which is defined as the ratio between the number 

of buy orders and the number of sell orders. In real markets, data of these variables 

                                                   
20 Strictly speaking, the price of the asset does not move during a buy-herd or a 
sell-herd. This occurs because the model assumes that prices only react to new 
information, which is in accordance with the efficient market hypothesis, whereas 
orders in a herd convey no information, which is an important property of herding. To 
model dramatic price movements during bubbles and crashes, additional assumptions 
are needed that, however, will make the model far more complex while providing few 
additional implications about the effects of regret. 
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exists and has been studied in the literature of market microstructure.21  

We start with the case in Corollary 4. Recall that when the price of the asset moves 

from the truth-telling region into the region of the partial buy-herd, bearish traders 

will exit the market; if the price keeps rising and moves into the region of the buy-herd, 

then bearish traders will come back to buy the asset. Bearish traders’ exiting and 

reentering will cause changes in both order volume and order imbalance; therefore, 

Corollary 4 suggests that the market will exhibit the following changes when it is 

moving toward a bubble. 

 

Remark 1 (Along the path toward a bubble) When a bull market starts after a series of 

price increases, the market tends to exhibit a high order imbalance but a low volume. If 

the price keeps rising and a bubble forms in the market, both order imbalance and 

volume will increase sharply.   

 

In Minsky’s model, as described by Kindleberger and Aliber (2005) and 

Brunnermeier and Oehmke (2013), there are five phases for a bubble to form and to 

burst: an initial displacement, a boom phase, a phase of euphoria, a phase of profit 

taking, and a panic phase. Among these, the boom phase is characterized by low 

volatility, credit expansion, and increases in investment, while the phase of euphoria is 

associated with high trading volume. It is easy to see that the model in the present 

paper is consistent with Minsky’s model.  

Next, consider the case where the asset price moves from the truth-telling region 

                                                   
21 For empirical studies about order imbalance and volume, see, for example, Blume et 
al. (1989) and Chordia et al. (2002). 
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into the region of partial buy-herd and buy-herd. Corollary 4 implies that, along the 

path toward a bubble, the following changes will occur in the market.  

 

Remark 2 (Along the path toward a crash) When a bear market starts after a series of 

price declines, the market tends to exhibit low order imbalance as well as low volume. 

If the price keeps dropping and triggers a market crash, there will be a sudden increase 

in volume together with a sharp drop in order imbalance.  

  

    When observing the relationship between order imbalance and volume during 

herds and partial herds, Corollary 4 also implies the following result.  

 

Remark 3 (Order imbalance and Volume) When the market moves from a bear market 

toward a crash, order imbalance and volume tend to have a negative correlation; when 

the market moves from a bull market toward a bubble, order imbalance and volume 

tend to show a positive correlation.  

 

This result helps to understand fluctuations in order imbalance and volume during 

market turbulences; moreover, the prediction can be empirically tested. In the sense 

that theoretical models about order imbalance and volume are relatively few, this 

result may be regarded as an important contribution of this paper.   

Below, we discuss an extension to this model. In the present paper, regret over 

action and regret over inaction are controlled by two parameters, 𝜂 and 𝑧. We can 

extend this model by allowing the magnitude of regret to evolve dynamically. 

Specifically, we can use function 𝜂(𝑡,𝑝𝑡) instead of parameter 𝜂, and function 𝑧(𝑡,𝑝𝑡) 
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instead of parameter 𝑧. As discussed in the introduction, psychological studies suggest 

that, in the short term, people tend to regret actions more, but in the long term, they 

tend to regret inactions more. Experimental findings also show that regret aversion 

tends to increase after experiencing regret. Therefore, it is quite likely that people tend 

to regret missed opportunities more when a bubble is still growing, while they tend to 

regret incautious investments more after the bubble collapses. 22  In light of 

psychological evidence, it is realistic to assume that 𝜂(𝑡,𝑝𝑡) is decreasing in both 𝑝𝑡 

and 𝑡, whereas 𝑧(𝑡,𝑝𝑡) is increasing in both 𝑝𝑡 and 𝑡. Most results in this paper will 

still hold in this generalized setting because the structure of the model remains 

unchanged. Furthermore, Corollary 5 implies that a market crash will result in the 

following changes in the market.     

 

Remark 4 (After a crash) If investors’ regret over action becomes extremely strong after 

a crash, the market will enter a non-trading region. In such a case, because order 

volume is low and buy and sell orders are balanced, price tends to remain at a low level 

for a long period.  

 

This implication is in accordance with experimental evidence.23 It is also in line 

with previous studies on crashes, such as Gennotte and Leland (1990) and Barlevy and 

Veronesi (2003), who demonstrate that after a crash, asset prices will stay on a path 

                                                   
22 Empirical studies such as Malmendier and Nagel (2011) and Strahilevitz et al. 
(2011) suggest that people’s willingness to take financial risks is affected by their 
experiences. 
23 In experimental settings, Ku (2008) shows that the experience of escalation makes 
people become more cautious in future decision making, and Reb (2008) finds that 
people make more careful decisions when regret is salient. 
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lower than the one before the crash. 

Conversely, if asset prices grow steadily for a long period, it is likely that investors’ 

regret over action will become weaker whereas their regret over inaction will become 

very strong. If this is the case, then Corollary 6 implies that a herd can easily occur in 

such a situation, and Corollary 2 suggests that the market can directly move from the 

truth-telling region into a herd region. Thus, the model implies that a strong bull 

market tends to end in a sudden crash.  

 

Remark 5 (After a boom) If investors’ regret over inaction becomes stronger after 

long-continued asset price rising, then the market will become more likely to encounter 

market turmoil. Moreover, market turmoil in this case will occur in a dramatic manner 

because a herd can suddenly occur without a partial herd occurring first. 

 

7. Conclusions  

Based on Regret Theory, this paper examines the effects of regret on investor 

behavior and market turbulence in a model where investors not only regret wrong 

actions, but also regret inaction. We demonstrate that regret aversion can cause 

investors to ride a bubble, exit and reenter the market, or choose non-trading. As a 

result, herds and partial herds can occur in the market, and the stronger is regret over 

inaction, the easier it is for herds to occur. The model predicts that order volume and 

order imbalance tend to have positive (negative) correlation when a bubble (crash) is 

forming. 

The present paper contributes to the research on asset bubbles by illustrating the 

role of regret in market fluctuations. It also contributes to the literature in 



43 
 

neuroeconomics by showing the effects of regret over inaction on economic decision 

making. To the knowledge of the author, this is the first study that explicitly 

incorporates regret over inaction into a decision-making model.    

 

Appendix A. Proofs for the model in Section 3. 

 

Proof of Lemma 1.  

Consider a bullish trader’s decision making, who observes a signal 𝑠 = 1. By 

equations (10), (13), and (15),  

𝑈𝑡1(1)− 𝑈𝑡1(−1) = 2(𝜇𝑡1 − 𝜇𝑡)− 𝜂(1 − 𝜇𝑡1)�2𝜇𝑡 + 𝜂𝜇𝑡1�2(1 − 𝜇𝑡).             (A.1) 

Hence,  

𝑈𝑡1(1)− 𝑈𝑡1(−1) ⋛ 0 ⟺𝑀1(𝜇𝑡) ⋚ √2
𝜂

                                      (A.2) 

where  

𝑀1(𝜇𝑡) = �1−𝜇𝑡1��𝜇𝑡−𝜇𝑡1�(1−𝜇𝑡)
𝜇𝑡1−𝜇𝑡

.                                            (A.3)  

Substituting (11) into above equation, we have   

𝑀1(𝜇𝑡) =
�1+

1
𝜆𝑡
−𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
                                                 (A.4) 

where 𝜆𝑡 = 𝜇𝑡
1−𝜇𝑡

 and 𝜆𝑞 = 𝑞
1−𝑞

. Note that 𝜆𝑡  is strictly increasing in 𝜇𝑡  with 

𝜆𝑡|𝜇𝑡=0.5 = 1 . Hence, 𝑀1(𝜇𝑡) is strictly decreasing in 𝜇𝑡  with 𝑀1(0.5) = −√2 ; 

furthermore, 𝑀1(𝜇𝑡) → +∞ as 𝜇𝑡 → 0. As 𝑀1(∙) is a continuous function of 𝜇𝑡, there 

exists 𝜇 ∈ �0, 1
2
�  such that 𝜇  is the unique solution to 𝑀1(𝜇𝑡) = √2

𝜂
. Obviously, 𝜇 

depends on 𝑞 and 𝜂, but does not depend on 𝑡. Thus, equation (18) holds.  
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Next, consider a bearish trader’s problem who observes a signal 𝑠 = 0 . By 

equations (10), (13), and (15),  

𝑈𝑡0(−1)− 𝑈𝑡0(1) = 2(𝜇𝑡 − 𝜇𝑡0) − 𝜂𝜇𝑡0�2(1 − 𝜇𝑡) + 𝜂(1 − 𝜇𝑡0)�2𝜇𝑡.             (A.5) 

Hence, 

𝑈𝑡0(−1)− 𝑈𝑡0(1) ⋛ 0 ⟺𝑀0(𝜇𝑡) ⋚ √2
𝜂

                                      (A.6) 

where  

𝑀0(𝜇𝑡) = 𝜇𝑡
0�(1−𝜇𝑡)−�1−𝜇𝑡

0��𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
�1+𝜆𝑡−𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
.                              (A.7) 

Because 𝜆𝑡 = 𝜇𝑡
1−𝜇𝑡

, 𝑀0(𝜇𝑡)  is strictly increasing in 𝜇𝑡  with 𝑀0(0.5) = −√2 ; 

furthermore,  𝑀0(𝜇𝑡) → +∞ as 𝜇𝑡 → 1. Therefore, there exists unique 𝜇 ∈ �1
2

, 1� such 

that 𝑀0(𝜇) = √2
𝜂

. It is easy to see that 𝜇 is the unique solution to 𝑀0(𝜇𝑡) = √2
𝜂

 and it 

does not depend on 𝑡. Thus, equation (19) holds.   Q.E.D. 

 

Proof of Lemma 2.  

Consider a bullish trader’s decision making, who observes a signal 𝑠 = 1. By 

equations (13)-(15), we have 

 𝑈𝑡1(1) −𝑈𝑡1(0) = 𝜇𝑡1 − 𝜇𝑡 − 𝜂(1 − 𝜇𝑡1)�2𝜇𝑡 + 𝜂𝜇𝑡1�1 − 𝜇𝑡 + 𝜂(1 − 𝜇𝑡1)�𝜇𝑡,      (A.8) 

𝑈𝑡1(0)− 𝑈𝑡1(−1) = 𝜇𝑡1 − 𝜇𝑡 + 𝜂𝜇𝑡1�2(1 − 𝜇𝑡) − 𝜂𝜇𝑡1�1 − 𝜇𝑡 − 𝜂(1 − 𝜇𝑡1)�𝜇𝑡.     (A.9) 

Hence,  

𝑈𝑡1(1) − 𝑈𝑡1(0) ⋛ 0 ⟺𝐾1(𝜇𝑡) ⋚
√2
𝜂

,                                      (A.10) 

𝑈𝑡1(0) − 𝑈𝑡1(−1) ⋛ 0 ⟺𝐺1(𝜇𝑡) ⋚
√2
𝜂

                                     (A.11) 

where  
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𝐾1(𝜇𝑡) = �2−√2��1−𝜇𝑡1��𝜇𝑡−√2𝜇𝑡1�1−𝜇𝑡
𝜇𝑡1−𝜇𝑡

=
�2−√2��1+

1
𝜆𝑡
−√2𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
,                 (A.12) 

𝐺1(𝜇𝑡) = √2�1−𝜇𝑡1��𝜇𝑡−�2−√2�𝜇𝑡1�1−𝜇𝑡
𝜇𝑡1−𝜇𝑡

=
√2�1+

1
𝜆𝑡
−�2−√2�𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
.                 (A.13) 

Both 𝐾1(𝜇𝑡) and 𝐺1(𝜇𝑡) are strictly decreasing in 𝜇𝑡 . As 𝜇𝑡 → 1, 𝐾1(𝜇𝑡) → −∞ and 

𝐺1(𝜇𝑡)→ −∞; as 𝜇𝑡 → 0, 𝐾1(𝜇𝑡)→ +∞ and 𝐺1(𝜇𝑡) → +∞. Thus, 𝐾1(𝜇𝑡) = √2
𝜂

 has unique 

solution 𝜅  and 𝐺1(𝜇𝑡) = √2
𝜂

 has unique solution 𝜈 . Furthermore, ∀𝜇𝑡 ∈ (0,1) , 

𝐺1(𝜇𝑡) > 𝑀1(𝜇𝑡) > 𝐾1(𝜇𝑡)  holds. Thus, 0 < 𝜅 < 𝜇 < 𝜈 < 1 . As shown in Figure 1, 

equation (20) is obtained by comparing 𝑈𝑡1(1), 𝑈𝑡1(0), and 𝑈𝑡1(−1) in each of the 

intervals (0, 𝜅), (𝜅, 𝜇), (𝜇, 𝜈), and (𝜈, 1).  

For a bearish trader, equations (13)-(15) imply that  

𝑈𝑡0(−1)− 𝑈𝑡0(0) = 𝜇𝑡 − 𝜇𝑡0 − 𝜂𝜇𝑡0�2(1 − 𝜇𝑡) + 𝜂𝜇𝑡0�1 − 𝜇𝑡 + 𝜂(1 − 𝜇𝑡0)�𝜇𝑡,   (A.14) 

𝑈𝑡0(0) −𝑈𝑡0(1) = 𝜇𝑡 − 𝜇𝑡0 + 𝜂(1 − 𝜇𝑡0)�2𝜇𝑡 − 𝜂𝜇𝑡0�1 − 𝜇𝑡 − 𝜂(1 − 𝜇𝑡0)�𝜇𝑡.    (A.15) 

Hence,  

𝑈𝑡0(−1)− 𝑈𝑡0(0) ⋛ 0 ⟺𝐾0(𝜇𝑡) ⋚ √2
𝜂

,                      (A.16) 

𝑈𝑡0(0) −𝑈𝑡0(1) ⋛ 0 ⟺ 𝐺0(𝜇𝑡) ⋚ √2
𝜂

                       (A.17) 

where  

𝐾0(𝜇𝑡) = �2−√2�𝜇𝑡
0�1−𝜇𝑡−√2�1−𝜇𝑡

0��𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
�2−√2��1+𝜆𝑡−√2𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
,            (A.18) 

𝐺0(𝜇𝑡) = √2𝜇𝑡
0�1−𝜇𝑡−�2−√2�(1−𝜇𝑡

0)�𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
√2�1+𝜆𝑡−�2−√2�𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
.                (A.19) 

Both 𝐾0(𝜇𝑡) and 𝐺0(𝜇𝑡) are strictly increasing in 𝜇𝑡 . As 𝜇𝑡 → 1, 𝐾0(𝜇𝑡) → +∞ and 
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𝐺0(𝜇𝑡)→ +∞ ; as 𝜇𝑡 → 0 , 𝐾0(𝜇𝑡)→ −∞  and 𝐺0(𝜇𝑡) → −∞ . Hence,  𝐾0(𝜇𝑡) = √2
𝜂

 has 

unique solution 𝜅 and 𝐺0(𝜇𝑡) = √2
𝜂

 has unique solution 𝜈. Because 𝐺0(𝜇𝑡) > 𝑀0(𝜇𝑡) >

𝐾0(𝜇𝑡) holds for 𝜇𝑡 ∈ (0,1), we have 0 < 𝜈 < 𝜇 < 𝜅 < 1. As shown in Fiugre 1, this 

result ensures the holding of (21).  Q.E.D. 

 

Proof of Corollary 1.  

First, consider the effect of 𝜂. As shown in the proof of Lemma 1, 𝜇 is the solution 

to 𝑀1(𝜇𝑡) = √2
𝜂

, where 𝑀1(𝜇𝑡) =
�1+

1
𝜆𝑡
−𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
 and 𝜆𝑡 = 𝜇𝑡

1−𝜇𝑡
. It is easy to see that 

𝜕(𝑀1�𝜇�−√2𝜂 )

𝜕𝜕
= 𝜕𝑀1

𝜕𝜕

𝜕𝜇

𝜕𝜕
+ √2

𝜂2
= 0 and 𝜕𝑀

1

𝜕𝜕
< 0; thus, 

𝜕𝜇

𝜕𝜕
> 0. Similarly, 𝜇 is the solution to 

𝑀0(𝜇𝑡) = √2
𝜂

, where 𝑀0(𝜇𝑡) =
�1+𝜆𝑡−𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
. Because 

𝜕(𝑀0�𝜇�−√2𝜂 )

𝜕𝜕
= 𝜕𝑀0

𝜕𝜕
𝜕𝜇
𝜕𝜕

+ √2
𝜂2

= 0  and 

𝜕𝑀0

𝜕𝜕
> 0, we have 𝜕𝜇

𝜕𝜕
< 0.  

Next, consider the effect of 𝑞 . From 
𝜕(𝑀1�𝜇�−√2𝜂 )

𝜕𝜕
= 𝜕𝑀1

𝜕𝜕

𝜕𝜇

𝜕𝜕
+ 𝜕𝑀1

𝜕𝜆𝑞

𝜕𝜆𝑞
𝜕𝜕

= 0 , 𝜕𝑀
1

𝜕𝜕
< 0 , 

 𝜕𝑀
1

𝜕𝜆𝑞
< 0, and 𝜕𝜆𝑞

𝜕𝜕
> 0, we have  

𝜕𝜇

𝜕𝜕
< 0. Similarly, from  

𝜕(𝑀0�𝜇�−√2𝜂 )

𝜕𝜕
= 𝜕𝑀0

𝜕𝜕
𝜕𝜇
𝜕𝜕

+ 𝜕𝑀0

𝜕𝜆𝑞

𝜕𝜆𝑞
𝜕𝜕

= 0, 

𝜕𝑀0

𝜕𝜕
> 0,  𝜕𝑀

0

𝜕𝜆𝑞
< 0, and 𝜕𝜆𝑞

𝜕𝜕
> 0, we have 𝜕𝜇

𝜕𝜕
> 0.  Q.E.D.       

 

Proof for Corollary 2.   

  

Faced with 𝑝𝑡𝑎 = 𝜇𝑡 + 𝑒𝑡
2
 and 𝑝𝑡𝑏 = 𝜇𝑡 −

𝑒𝑡
2
, an informed trader’s expected utility on 
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position 𝑥, denoted by 𝑈�𝑡𝑠(𝑥), is as follows.  

𝑈�𝑡𝑠(1) = 𝜇𝑡𝑠 �1 − 𝜇𝑡 −
𝑒𝑡
2
�+ (1 − 𝜇𝑡𝑠) �−𝜇𝑡 −

𝑒𝑡
2
− 𝜂�2𝜇𝑡� = 𝑈𝑡𝑠(1) − 𝑒𝑡

2
,       (A.20) 

𝑈�𝑡𝑠(0) = −𝜂𝜇𝑡𝑠�1 − 𝜇𝑡 −
𝑒𝑡
2
− 𝜂(1 − 𝜇𝑡𝑠)�𝜇𝑡 −

𝑒𝑡
2

 

= 𝑈𝑡𝑠(0) + 𝜂𝜇𝑡
𝑠𝑒𝑡

2��1−𝜇𝑡+�1−𝜇𝑡−
𝑒𝑡
2 �

+ 𝜂(1−𝜇𝑡
𝑠)𝑒𝑡

2��𝜇𝑡+�𝜇𝑡−
𝑒𝑡
2 �

,                       (A.21) 

𝑈�𝑡𝑠(−1) = 𝜇𝑡𝑠 �𝜇𝑡 −
𝑒𝑡
2
− 1 − 𝜂�2(1 − 𝜇𝑡)� + (1 − 𝜇𝑡𝑠) �𝜇𝑡 −

𝑒𝑡
2
� = 𝑈𝑡𝑠(−1)− 𝑒𝑡

2
  (A.22) 

where 𝑈𝑡𝑠(𝑥) is given by equations (13)-(15) with 𝑝𝑡 = 𝜇𝑡.  

It is easy to see that 𝑈�𝑡1(1)− 𝑈�𝑡1(−1) = 𝑈𝑡1(1)− 𝑈𝑡1(−1) . Recall that 𝑈𝑡1(1)−

𝑈𝑡1(−1) = 0  when 𝜇𝑡 = 𝜇 , and 𝑈𝑡𝑠(1) − 𝑈𝑡𝑠(−1) > 0  when 𝜇𝑡 > 𝜇 . Thus, 𝑈�𝑡1(1)−

𝑈�𝑡1(−1) ≥ 0  holds for 𝜇𝑡 ∈ [𝜇, 𝜇] . Furthermore, 𝑈�𝑡1(1) − 𝑈�𝑡1(0) = 𝑈𝑡1(1)− 𝑈𝑡1(0)− 𝑒𝑡
2
−

𝜂𝜇𝑡1𝑒𝑡

2��1−𝜇𝑡+�1−𝜇𝑡−
𝑒𝑡
2 �
− 𝜂�1−𝜇𝑡1�𝑒𝑡

2��𝜇𝑡+�𝜇𝑡−
𝑒𝑡
2 �

. Obviously, 𝑈�𝑡1(1)− 𝑈�𝑡1(0) > 𝑈𝑡1(1) − 𝑈𝑡1(0) − 𝑒𝑡
2
−

𝜂𝜇𝑡1𝑒𝑡
2�1−𝜇𝑡

− 𝜂�1−𝜇𝑡1�𝑒𝑡
2�𝜇𝑡

. As shown in the proof of Lemma 2, 𝑈𝑡1(1)− 𝑈𝑡1(0) is a continuous 

function of 𝜇𝑡  with 𝑈𝑡1(1)− 𝑈𝑡1(0) > 0  for 𝜇𝑡 ∈ [𝜇, 𝜇] . Obviously, ∃𝑒̌ > 0 , such that 

𝑈�𝑡1(1)− 𝑈�𝑡1(0) ≥ 0 holds for (𝜇𝑡 , 𝑒𝑡) ∈ [𝜇, 𝜇] × [0, 𝑒̌).  

Symmetrically, for a bearish trader, 𝑈�𝑡0(−1) −𝑈�𝑡0(1) ≥ 0  holds for 𝜇𝑡 ∈ [𝜇, 𝜇] ; 

furthermore, ∃𝑒̂ > 0, such that 𝑈�𝑡0(−1)− 𝑈�𝑡0(0) ≥ 0 holds for (𝜇𝑡 , 𝑒𝑡) ∈ [𝜇, 𝜇] × [0, 𝑒̂). 

Let 𝑒̅ ≡ 𝑚𝑚𝑚 {𝑒̌, 𝑒̂, 2𝜇, 2(1 − 𝜇̅)} and consider the following pricing rule.  

𝑝𝑡𝑎 = �
𝜇𝑡 + 𝑒𝑡

2
𝑖𝑖  𝜇𝑡 ∈ [𝜇, 𝜇]

𝜇𝑡 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒;
                                         (A.23) 

𝑝𝑡𝑏 = �
𝜇𝑡 −

𝑒𝑡
2

𝑖𝑖  𝜇𝑡 ∈ [𝜇, 𝜇]
𝜇𝑡 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

                                         (A.24) 
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where 0 ≤ 𝑒𝑡 < 𝑒̅.  

By the analysis above, 𝑈�𝑡1(1) ≥ max {𝑈�𝑡1(−1),𝑈�𝑡1(0)}  and 

𝑈�𝑡0(−1) ≥ max {𝑈�𝑡0(1),𝑈�𝑡0(0)}  hold for (𝜇𝑡 , 𝑒𝑡) ∈ [𝜇, 𝜇] × [0, 𝑒̅). Therefore, if the market 

maker applies pricing rule (A.23)-(A.24), a bullish trader will choose buy whereas a 

bearish trader will choose sell when 𝜇𝑡 ∈ [𝜇, 𝜇]. When 𝜇𝑡 ∈ (0, 𝜇), because 𝑝𝑡𝑎 = 𝑝𝑡𝑏 = 𝜇𝑡 

by (A.23)-(A.24), all informed traders choose sell as in the case of Proposition 1. 

Symmetrically, when 𝜇𝑡 ∈ (𝜇, 1), because the price is set at 𝑝𝑡𝑎 = 𝑝𝑡𝑏 = 𝜇𝑡, all informed 

traders choose buy. Therefore, if the market maker adopts pricing rule (A.23)-(A.24) 

with 0 ≤ 𝑒𝑡 < 𝑒̅, it is optimal for informed traders to act according to strategy (22)-(23).  

    Conversely, given that informed traders act according to (22)-(23), the pricing rule 

given by (A.23)-(A.24) satisfies equations (24)-(25) and the requirement that 0 < 𝑝𝑡𝑏 ≤

𝑝𝑡𝑎 < 1. Thus, the pricing rule given by (A.23)-(A.24) and the trading strategy given by 

(22)-(23) constitute an equilibrium. This completes the proof.  Q.E.D. 

 

Appendix B. Proofs for the model in Section 4 

 

Proof of Proposition 2.  

Under Assumption 2, an informed trader’s expected utility is as follows. 

𝑈𝑡𝑠(1) = 𝜇𝑡𝑠(1 − 𝑝𝑡) − (1 − 𝜇𝑡𝑠)�𝑝𝑡 + 𝜂�2𝑝𝑡�,                               (B.1) 

𝑈𝑡𝑠(0) = −𝑧𝑧𝜇𝑡𝑠�1 − 𝑝𝑡 − 𝑧𝑧(1 − 𝜇𝑡𝑠)�𝑝𝑡 ,                             (B.2) 

𝑈𝑡𝑠(−1) = 𝜇𝑡𝑠�𝑝𝑡 − 1 − 𝜂�2(1 − 𝑝𝑡)�+ (1 − 𝜇𝑡𝑠)𝑝𝑡  .                        (B.3) 

For a bullish trader with signal 𝑠 = 1, 𝑈𝑡1(1) − 𝑈𝑡1(−1) ⋛ 0 ⟺𝑀𝑡
1 ⋚ √2

𝜂
, 𝑈𝑡1(1)−
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𝑈𝑡1(0) ⋛ 0 ⟺𝐾𝑡1 ⋚
√2
𝜂

, and 𝑈𝑡1(0)− 𝑈𝑡1(−1) ⋛ 0 ⟺ 𝐺𝑡1 ⋚
√2
𝜂

, where  

𝑀1(𝜇𝑡) = �1−𝜇𝑡1��𝜇𝑡−𝜇𝑡1�1−𝜇𝑡
𝜇𝑡1−𝜇𝑡

=
�1+

1
𝜆𝑡
−𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
,                        (B.4) 

𝐾1(𝜇𝑡) = �2−√2𝑧��1−𝜇𝑡1��𝜇𝑡−√2𝑧𝜇𝑡1�1−𝜇𝑡
𝜇𝑡1−𝜇𝑡

=
�2−√2𝑧��1+

1
𝜆𝑡
−√2𝑧𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
,              (B.5) 

𝐺1(𝜇𝑡) = √2𝑧�1−𝜇𝑡1��𝜇𝑡−�2−√2𝑧�𝜇𝑡1�1−𝜇𝑡
𝜇𝑡1−𝜇𝑡

=
√2𝑧�1+

1
𝜆𝑡
−�2−√2𝑧�𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
.             (B.6) 

For a bearish trader with signal 𝑠 = 0 , 𝑈𝑡0(−1)− 𝑈𝑡0(1) ⋛ 0 ⟺𝑀0(𝜇𝑡) ⋚ √2
𝜂

, 

𝑈𝑡0(−1) −𝑈𝑡0(0) ⋛ 0 ⟺𝐾0(𝜇𝑡) ⋚
√2
𝜂

, and 𝑈𝑡0(0) − 𝑈𝑡0(1) ⋛ 0 ⟺ 𝐺0(𝜇𝑡) ⋚
√2
𝜂

,  where  

𝑀0(𝜇𝑡) = 𝜇𝑡
0�1−𝜇𝑡−�1−𝜇𝑡

0��𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
�1+𝜆𝑡−𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
,                         (B.7) 

𝐾0(𝜇𝑡) = �2−√2𝑧�𝜇𝑡
0�1−𝜇𝑡−√2𝑧�1−𝜇𝑡

0��𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
�2−√2𝑧��1+𝜆𝑡−√2𝑧𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
,              (B.8) 

𝐺0(𝜇𝑡) = √2𝑧𝜇𝑡
0�1−𝜇𝑡−�2−√2𝑧��1−𝜇𝑡

0��𝜇𝑡
𝜇𝑡−𝜇𝑡

0 =
√2𝑧�1+𝜆𝑡−�2−√2𝑧�𝜆𝑞�1+

1
𝜆𝑡

𝜆𝑞−1
.               (B.9) 

Obviously, equation (B.4) is the same as (A.4), and (B.7) is the same as (A.7). Thus, 

as in the case of Lemma 1, 𝑀1 is a monotonically decreasing function while 𝑀0 is a 

monotonically increasing function; furthermore, 𝑀1(𝜇) = √2
𝜂

, 𝑀0(𝜇) = √2
𝜂

, and 𝜇 < 1
2

< 𝜇. 

When z ≥ √2 , it is easy to see that 𝐾1(𝜇𝑡) < 𝑀1(𝜇𝑡) < 𝐺1(𝜇𝑡)  and 𝐾0(𝜇𝑡) <

𝑀0(𝜇𝑡) < 𝐺0(𝜇𝑡). Thus, for 𝜇𝑡 ∈ (0, 𝜇), we have 𝐺1(𝜇𝑡) > 𝑀1(𝜇𝑡) > √2
𝜂

, which implies 

𝑈𝑡1(−1) > 𝑈𝑡1(0)  and 𝑈𝑡1(−1) > 𝑈𝑡1(1) ; for 𝜇𝑡 ∈ [𝜇, 1) , we have 𝐾1(𝜇𝑡) < 𝑀1(𝜇𝑡) ≤ √2
𝜂

, 

which implies 𝑈𝑡1(1) > 𝑈𝑡1(0)  and 𝑈𝑡1(1) ≥ 𝑈𝑡1(−1) . Therefore, equation (27) holds. 

Equation (28) can be obtained by an analogous argument.    
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When √2
2

< z < √2 , 𝐾1(𝜇𝑡)  and 𝐺1(𝜇𝑡)  are strictly decreasing functions of 𝜇𝑡 . 

Analogous to the proof of Lemma 2, it is easy to see that 𝜅 and 𝜈 exist such that 

𝐾1(𝜅) = √2
𝜂

 and 𝐺1(𝜈) = √2
𝜂

. Symmetrically, 𝐾0(𝜇𝑡) and 𝐺0(𝜇𝑡) are strictly increasing 

in 𝜇𝑡 with 𝜅 and 𝜈 existing such that 𝐾0(𝜅) = √2
𝜂

 and 𝐺0(𝜈) = √2
𝜂

. Because 𝐾1(𝜇𝑡) <

𝑀1(𝜇𝑡) < 𝐺1(𝜇𝑡) and 𝐾0(𝜇𝑡) < 𝑀0(𝜇𝑡) < 𝐺0(𝜇𝑡) hold when 𝑧 > √2
2

, we have 0 < 𝜅 < 𝜇 <

𝜈 < 1 and 0 < 𝜈 < 𝜇 < 𝜅 < 1. As shown in Figure 1, we can compare 𝑈𝑡𝑠(𝑥) resulting 

from different positions in each interval of 𝜇𝑡. For a bullish trader, it is easy to see that 

𝑈𝑡1(1) ≥ 𝑈𝑡1(−1)  and 𝑈𝑡1(1) > 𝑈𝑡1(0)  hold for 𝜇 ∈ [𝜇, 1) , while 𝑈𝑡1(−1) > 𝑈𝑡1(1)  and 

𝑈𝑡1(−1) > 𝑈𝑡1(0) hold for 𝜇 ∈ (0, 𝜇); thus, equation (27) holds. For a bearish trader, 

equation (28) can be obtained similarly.   

When 𝑧 = √2
2

, we have 0 < 𝜅 = 𝜇 = 𝜈 < 0.5 < 𝜈 = 𝜇 = 𝜅 < 1. It is easy to see that 

(27) and (28) also hold in this case.  Q.E.D.  

 

Proof of Proposition 3.  

First, note that √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

< √2
2

. Hence, the condition √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 𝑧 < √2
2

 

is well defined, where √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

⋛ 0 ⇔ 𝜂 ⋛ 𝜆𝑞−1
2

. Because 𝑧 > 0 by assumption,  

√2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 𝑧 < √2
2

 holds in two subcases: 𝜂 ≤ 𝜆𝑞−1
2

 and √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 0 < 𝑧 <

√2
2

; 𝜂 > 𝜆𝑞−1
2

 and 0 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

≤ 𝑧 < √2
2

. In either subcase, 𝐾1(𝜇𝑡), 𝑀1(𝜇𝑡), and 

𝐺1(𝜇𝑡) in equations (B.4)-(B.6) are decreasing functions of 𝜇𝑡, with 𝐾1(𝜇𝑡) > 𝑀1(𝜇𝑡) >

𝐺1(𝜇𝑡). It is easy to see that there are 𝜈 < 𝜇 < 𝜅 such that  𝐾1(𝜅) = √2
𝜂

, 𝑀1(𝜇) = √2
𝜂

, 
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and 𝐺1(𝜈) = √2
𝜂

. Symmetrically, 𝐾0(𝜇𝑡), 𝑀0(𝜇𝑡) , and 𝐺0(𝜇𝑡)  are strictly increasing 

functions of 𝜇𝑡 with 𝐾0(𝜇𝑡) > 𝑀0(𝜇𝑡) > 𝐺0(𝜇𝑡); moreover, it is easy to see that there 

are 𝜅 < 𝜇 < 𝜈  such that 𝐾0(𝜅) = √2
𝜂

, 𝑀0(𝜇) = √2
𝜂

, and 𝐺0(𝜇) = √2
𝜂

. Furthermore, it 

follows from (B.5) and (B.8) that 𝐾1(0.5) = 𝐾0(0.5) ≤ √2
𝜂

 holds when 𝑧 ≥ √2
1+𝜆𝑞

−

𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

, which implies the holding of 𝜅 ≤ 0.5 ≤ 𝜅. Thus, as shown in Figure 2, we have 

0 < 𝜈 < 𝜇 < 𝜅 ≤ 0.5 ≤ 𝜅 < 𝜇 < 𝜈 < 1, which ensures the holding of (29) and (30).  Q.E.D.  

 

Proof of Proposition 4.  

    It is easy to see that √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

> 0 when 𝜂 > 𝜆𝑞−1
2

; thus, the condition of 

Proposition 4 is well defined. Analogous to the proof of Proposition 3, it is easy to show 

that 𝜈 < 𝜇 < 𝜅  and 𝜅 < 𝜇 < 𝜈  hold when z < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

< √2
2

. Thus, to prove 

Proposition 4, we only need to prove 𝜈 < 𝜅 ≤ 0.5 ≤ 𝜅 < 𝜈.  

By (B.5) and (B.8), 𝐾1(0.5) = 𝐾0(0.5) > √2
𝜂

 if 𝑧 < √2
1+𝜆𝑞

− 𝜆𝑞−1
√2𝜂�1+𝜆𝑞�

; thus, 𝜅 < 0.5 < 𝜅. 

By (B.6) and (B.8), 𝐺1(𝜇𝑡) −𝐾0(𝜇𝑡) =
�1+𝜆𝑞��√2𝑧�1+

1
𝜆𝑡
−�2−√2𝑧��1+𝜆𝑡�

𝜆𝑞−1
. Note that 𝐺1�𝜈� = √2

𝜂
 

and 𝐺1(𝜇𝑡) = √2
𝜂

 ⟺
√2𝑧�1+

1
𝜆𝑡
−�2−√2𝑧�𝜆𝑞�1+𝜆𝑡

𝜆𝑞−1
= √2

𝜂
 ⟹√2𝑧�1 + 1

𝜆𝑡
− �2 −√2𝑧��1 + 𝜆𝑡 > 0 . 

Therefore, 𝐺1�𝜈� > 𝐾0�𝜈�  holds, which implies 𝜈 < 𝜅 . By an analogous argument, 

𝜅 < 𝜈 also holds. Thus, 𝜈 < 𝜅 < 0.5 < 𝜅 < 𝜈. As shown in Figure 3, by comparing the 

utilities of buy, sell, and inaction in each interval of 𝜇𝑡, equations (31) and (32) are 

obtained.  Q.E.D. 
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Proof of Corollary 6. 

We first prove statement (i). It follows from 𝑀0(𝜇) =  √2
𝜂

 that 𝜕𝑀
0

𝜕𝜕
𝜕𝜇
𝜕𝜕

< 0. Because 

 𝜕𝑀
0

𝜕𝜕
> 0 by equation (B.7), we have 𝜕𝜇

𝜕𝜕
< 0. Furthermore, it follows from 𝐺0(𝜈) =  √2

𝜂
 

that 𝜕𝐺
0

𝜕𝜕
𝜕𝜈
𝜕𝜕

< 0, and it follows from equation (B.9) that 𝜕𝐺
0

𝜕𝜕
> 0; thus, we have 𝜕𝜈

𝜕𝜕
< 0. 

By equation (46), 𝑝 = 𝜇 for 𝑧 > √2
2

 and 𝑝 = ν for 𝑧 < √2
2

. Obviously, given any 𝑧 > 0, 𝑝 

is strictly decreasing with respect to 𝜂. By analogous argument, we can obtain 
𝜕𝜇

𝜕𝜕
> 0 

and 𝜕𝜈
𝜕𝜕

> 0; therefore, given any 𝑧 > 0, 𝑝 is strictly increasing with respect to 𝜂.  

Next, we prove statement (ii). For 𝑧 < √2
2

, it follows from 𝐺0(𝜈) =  √2
𝜂

 that 

𝜕𝐺0

𝜕𝜕
𝜕𝜈
𝜕𝜕

+ 𝜕𝐺0

𝜕𝜕
= 0, and it follows from (B.9) that 𝜕𝐺

0

𝜕𝜕
> 0 and 𝜕𝐺

0

𝜕𝜕
> 0; therefore, 𝜕𝜈

𝜕𝜕
< 0 

holds. Because 𝑝 = ν for 𝑧 < √2
2

, it is clear that 𝑝 is strictly decreasing in 𝑧 on (0, √2
2

). 

For 𝑧 ≥ √2
2

, 𝑝 = 𝜇 by definition; furthermore, from (B.7) and 𝑀0(𝜇) =  √2
𝜂

, it is clear 

that 𝜇 does not depends on 𝑧. Recall that it follows from Propositions 4 and 5 that 

𝜈 ≤ 𝜇  holds for 𝑧 < √2
2

. Therefore, 𝑝  is a decreasing function of 𝑧  that is strictly 

decreasing on (0, √2
2

). By an analogous argument, we can prove 𝑝 is an increasing 

function of 𝑧 that is strictly increasing on (0, √2
2

).  Q.E.D. 
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